Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Overactive brain waves trigger essential tremor

17.01.2020

The source of essential tremor--a movement disorder that causes involuntary trembling of the hands, arms, and head--has been enigmatic, impeding the development of effective treatments for a condition that affects 4% of people over 40.

Now a new study from Columbia University Irving Medical Center and NewYork-Presbyterian suggests the tremors are caused by overactive brain waves at the base of the brain, raising the possibility of treating the disorder with neuromodulation to calm the oscillations.


A new study suggests that patients with essential tremor have unusual brain waves in the cerebellum that cause the tremors (the same brain waves in mice produce tremor). The left image show a cerebellar electroencephalogram (EEG) in a control subject; the right image shows additional brain waves in a patient. Highest intensity is colored in red, lowest intensity in blue.

Credit: Columbia University Irving Medical Center (Kuo lab)


Map of EEG intensity in patients with essential tremor. The highest intensity (red) is located in the cerebellar region of the brain.

Credit: Columbia University Irving Medical Center (Kuo lab)

"Past studies have identified changes in brain structure in people with essential tremor, but we didn't know how those changes caused tremors," says Sheng-Han Kuo, MD, the study's senior author and assistant professor of neurology at Columbia University Vagelos College of Physicians and Surgeons.

"This study pins down how those structural changes affect brain activity to drive tremor."

The study was published online today in Science Translational Medicine.

About Essential Tremor

Essential tremor is the most common movement disorder in the United States, affecting about 10 million Americans (approximately eight times as many people as Parkinson's disease).

The condition causes involuntary, rhythmic trembling, usually in the hands, and is exacerbated during such activities as buttoning a shirt or using utensils. Although essential tremor is not life-threatening, it can severely impact quality of life.

Some beta blockers and anti-epileptic drugs can reduce symptoms, but they carry side effects, such as fatigue and shortness of breath. They also don't work very well in essential tremor patients, which Kuo says isn't surprising since the cause of the condition hasn't been well understood.

Tremor Patients Have Excessive Brain Activity in the Cerebellum

The researchers have previously identified structural changes in the cerebellum of essential tremor patients and used a new cerebellar encephalogram (EEG) technique to search for unusual brain waves in this part of the brain.

Among 20 essential tremor patients examined with cerebellar EEG, most had strong oscillations (between 4 and 12 Hz) in the cerebellum that were not found in any of the 20 control subjects. Patients with more severe tremors had stronger oscillations.

Oscillations First Found in Mice

The researchers first discovered the cerebellar oscillations in mice that had developed tremors closely resembling those seen in essential tremor patients.

The tremors could be turned on and off by stimulating certain neurons in the mouse brain, alternately suppressing and unleashing the oscillations.

"These results established a causal relationship between the brain oscillations and tremor, which cannot be directly tested in patients," says Kuo, who is also an assistant attending neurologist at NewYork-Presbyterian/Columbia University Irving Medical Center.

Excessive Oscillations Stem from Extra Synapses

In previous studies of postmortem brain tissue from essential tremor patients, the Columbia team discovered that patients with essential tremor had an abnormally high number of synapses, or connections, between two types of nerve cells in the brain's cerebellum--climbing fibers and Purkinje cells.

In the current study, again using postmortem brain tissue, the researchers found that the formation of these synapses appears to be influenced by a protein called glutamate receptor delta 2 (GluR?2). "When this protein is underexpressed, any excess synapses that form between climbing fibers and Purkinje cells are not eliminated, resulting in too many neuronal connections," says Kuo.

When the team reduced expression of GluR?2 in mice, the animals developed tremors similar to those seen in humans. Restoring GluR?2 function suppressed the tremors, proving that the protein plays a key role in essential tremor.

Potential for New Treatments

The study opens several new possibilities for treatment of essential tremor, Kuo says.

"Using cerebellar EEG as a guide, we may be able to use neuromodulation techniques such as tDCS or TMS (transcranial direct-current stimulation or transcranial magnetic stimulation) to reduce tremor, or even drugs to reduce transmission between the climbing fibers and Purkinje cells."

Kuo is also working to develop medications that increase GluR?2 expression in the brain, which may reduce tremor.

###

The study is titled "Cerebellar oscillations driven by synaptic pruning deficits of cerebellar climbing fibers contribute to tremor pathophysiology."

The other contributors are Ming-Kai Pan (National Taiwan University Hospital, Taipei City, Taiwan), Yong-Shi Li (Columbia University Irving Medical Center, New York, NY), Shi-Bing Wong (CUIMC and Taipei Tzu Chi Hospital, Tzu Chi Medical Foundation, New Taipei City, Taiwan), Chun-Lun Ni (CUIMC), Yi-Mei Wang (National Taiwan University Hospital), Wen-Chuan (National Taiwan University Hospital), Liang-Yin Lu (National Taiwan University Hospital), Jye-Chang Lee (National Taiwan University Hospital), Etty P. Cortes (CUIMC), Jean-Paul G. Vonsatte (CUIMC), Qian Sun (Columbia and Case Western Reserve University, Cleveland, OH), Elan D. Louis (Yale University, New Haven, CT), and Phyllis L. Faust (CUIMC).

The research was supported by the National Institutes of Health (grants K08NS083738, R01NS104423, R01NS086736, R01NS073872, R01NS085136, R01NS088257, R01NS04289, and R21NS077094), Parkinson's Foundation, International Essential Tremor Foundation, National Institute of Environmental Health Sciences, Ministry of Science and Technology in Taiwan, and National Taiwan University Hospital, and a Louis V. Gerstner Jr. Scholar Award.

The authors declare that they have no financial or other conflicts of interest.

Columbia University Irving Medical Center provides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the Vagelos College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Irving Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast. For more information, visit cuimc.columbia.edu or columbiadoctors.org.

Helen Garey | EurekAlert!

More articles from Health and Medicine:

nachricht UIC researchers find unique organ-specific signature profiles for blood vessel cells
18.02.2020 | University of Illinois at Chicago

nachricht Remdesivir prevents MERS coronavirus disease in monkeys
14.02.2020 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

A step towards controlling spin-dependent petahertz electronics by material defects

19.02.2020 | Power and Electrical Engineering

Time-resolved measurement in a memory device

19.02.2020 | Physics and Astronomy

Mixed-signal hardware security thwarts powerful electromagnetic attacks

19.02.2020 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>