Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Orthopaedic smart device provides personalized medicine

15.02.2012
Tiny wireless sensors enable physicians to collect objective, quantifiable information

Imagine a smart sensor customized to provide vital, real-time information about a patient's recent orthopaedic surgery. Instead of relying on X-rays or invasive procedures, surgeons will be able to collect diagnostic data from an implantable sensor.

A study presented at the Orthopaedic Research Society 2012 Annual Meeting in San Francisco outlined this remarkable technology that promises to make post-surgical diagnosis and follow up more precise, efficient, and cost-effective.

"The sensor provides opportunities to make specific and detailed diagnostics for a particular patient and to tailor care based on very objective and quantitative measures," said Eric H. Ledet, PhD, Assistant Professor, Rensselaer Polytechnic Institute.

"This highly unique sensor is very small (4 mm diameter and 500 microns thick), is wireless, batteryless, and requires no telemetry within the body. Its simplicity makes it less prone to failure and very inexpensive to produce," Dr. Ledet explained.

The orthopaedic implant acts as a carrier for the sensor. The wireless sensor can monitor load, strain, motion, temperature, and pressure in the challenging in vivo environment. It can be placed into a spinal or fracture fixation implant, for example, to determine the patient's progress.

"For the patient that is progressing well, the information from the sensor enables the physician to determine that the patient can return to work without risk of injury," said Dr. Ledet. "The number of lost days at work is reduced."

It can also alert the physician to potential problems, indicating that additional interventions may be needed. "By maintaining a simple platform, we're able to customize the sensor and make it very, very small so it can be incorporated into a lot of different implants," said Rebecca A. Wachs, MS, Rensselaer Polytechnic Institute. "By changing one small parameter, we can change the sensitivity of the sensor itself."

Dr. Ledet reports a number of major breakthroughs with the sensor technology in the last eighteen months. Although the researchers are manually producing the sensor, they anticipate it will eventually be mass produced—driving the price down further.

About the Orthopaedic Research Society (ORS):

The Orthopaedic Research Society (ORS) is the pre-eminent organization for the advancement of musculoskeletal research. It seeks to transform the future through global multidisciplinary collaborations—focusing on the complex challenges of orthopaedic treatment. The ORS advances the global orthopaedic research agenda through excellence in research, education, collaboration, communication and advocacy. The ORS Annual Meeting and publication of the Journal of Orthopaedic Research provide vital forums for the musculoskeletal community to communicate the current state of orthopaedic research.

Annie Hayashi | EurekAlert!
Further information:
http://www.ors.org

More articles from Health and Medicine:

nachricht Nitric oxide-scavenging hydrogel developed for rheumatoid arthritis treatment
06.06.2019 | Pohang University of Science & Technology (POSTECH)

nachricht Infants later diagnosed with autism follow adults’ gaze, but seldom initiate joint attention
24.05.2019 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

Im Focus: 2D crystals conforming to 3D curves create strain for engineering quantum devices

A team led by scientists at the Department of Energy's Oak Ridge National Laboratory explored how atomically thin two-dimensional (2D) crystals can grow over 3D objects and how the curvature of those objects can stretch and strain the crystals. The findings, published in Science Advances, point to a strategy for engineering strain directly during the growth of atomically thin crystals to fabricate single photon emitters for quantum information processing.

The team first explored growth of the flat crystals on substrates patterned with sharp steps and trenches. Surprisingly, the crystals conformally grew up and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Looking into the inside of materials

13.06.2019 | Physics and Astronomy

Robot-assisted sensor system for the quality monitoring of hybrid parts and components

13.06.2019 | Trade Fair News

New record: 3D-printed optical-electronic integration

13.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>