Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Open cancer surgery set to become a thing of the past

25.09.2008
The surgeon’s knife is playing an ever smaller role in the treatment of cancer, as it is replaced by increasingly efficient and safe radiation therapy techniques. Progress in radiation technology will also lead to better detection rates for cancer. This is according to Professor Freek Beekman, who will give his inaugural speech at TU Delft on Wednesday, 24 September.

In his inaugural address, Kanker, krijg de straling , Professor Beekman says that radiation in the form of photons or particles is playing an increasingly important role in the detection and treatment of cancer. The low concentrations of radioactive molecules which gather in tumours, known as ‘tumour seekers’, show up well with techniques such as Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT).

Such techniques mean that tumours can be discovered earlier more often than using X-rays, and it is also more often possible to ascertain properties of tumour cells without removing a sample of the tissue. Doctors can choose the best treatment for the individual patient more quickly and easily.

Removal
Destroying tumours by using radiation, rather than chemotherapy and operations, is also becoming an ever more common method of treatment and, Beekman says, the accuracy of this kind of therapy has improved considerably in recent years. When cancer is treated using external beams of radiation (as in radiotherapy), it is actually not only the tumour that is exposed to large amounts of radiation, but also any healthy tissue that is in the way of the beam. ‘One example of a very powerful emerging technique is the use of a radiation beam consisting of particles (protons), instead of photons. This kind of beam reaches its peak intensity at the site of the tumour. This greatly reduces radiation damage in healthy tissue around the tumour.’

Finally, it is increasingly possible to treat tumours internally, for example by using tumour seekers that emit particles and destroy the tumour on the spot. If this kind of treatment only reaches the tumour and avoids harming healthy tissue, it will make this method superior to proton therapy.

U-SPECT
At TU Delft, Beekman will focus particularly on improving medical instruments, such as the U-SPECT scanner he developed himself. This Ultra-high resolution Single Photon Emission Computed Tomographer has significant advantages over other scanning techniques. The challenge is now to make the U-SPECT more precise and more versatile and use it to create better tumour seekers. The U-SPECT is now only available for use with small laboratory animals, but a version for humans is in the design phase. The diagnosis and treatment of cancer could, according to Beekman, be greatly improved by sharper SPECT images of patients. Various tracers mean that metastases, for example, are visible more quickly. We also hope that the effectiveness of chemotherapy can be seen very soon after beginning treatment by using the right tumour seekers, or even stop therapy with little chance of success from being started at all.
Medical Delta
‘The current quest for more efficient medical screening therapies, radiotherapy and tumour seekers is gradually leading towards better treatments for cancer,’ says Beekman. ‘Progress is gradual and it must be said that there are still a number of technical obstacles. But on the other hand, the type of instrumentation we are talking about here is not always rocket science. The problems we face are mostly not insurmountable.’

Improved technology means that we still have a hope of success in the detection and treatment of cancer. Beekman says it is important that hospitals and engineers work closely together.

The TU Delft is a part of Medical Delta, which provides the structure for this cooperation to take place. In Medical Delta, TU Delft cooperates with Erasmus University, the University of Leiden and their teaching hospitals.

Frank Nuijens | alfa
Further information:
http://www.tudelft.nl

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>