Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Obesity suppresses cellular process critical to kidney health

07.10.2013
Restoring the process may protect obese individuals' kidneys

Obesity increases a chronic kidney disease patient's risk of developing kidney failure.

Obesity suppresses an important cellular process that prevents kidney cell damage, according to a study appearing in an upcoming issue of the Journal of the American Society of Nephrology (JASN). The findings suggest that restoring the process could protect the kidney health of obese individuals.

Obesity increases a chronic kidney disease patient's risk of developing kidney failure, but the mechanism underlying this connection has remained unclear.

Kosuke Yamahara, Takashi Uzu, MD, PhD (Shiga University of Medical Science, in Japan), and their colleagues suspected that decreased functioning of a process called autophagy might play a role. Autophagy is a degradation system within cells that removes damaged proteins and other defective cellular components, and autophagy insufficiency is common in obese individuals.

The researchers found that in normal-weight mice with kidney disease, autophagy was active in kidney cells. However, in obese mice with kidney disease, autophagy was suppressed and kidney cells became damaged. Normal-weight mice with kidney disease and defective autophagy (due to a gene deletion) also experienced kidney cell damage.

The investigators also discovered that a potent suppressor of autophagy (called mTOR) was hyperactivated in the kidneys of obese mice, and treatment with an mTOR inhibitor ameliorated autophagy insufficiency. Furthermore, both mTOR hyperactivation and autophagy suppression were observed in kidney specimens from obese patients with kidney disease.

"Obesity suppresses autophagy via an abnormal activation of nutrition sensing signals in the kidney," said Yamahara. "Our results suggest that restoring the kidney-protective action of autophagy may improve the kidney health of obese patients."

In an accompanying editorial, Ken Inoki, PhD (University of Michigan) stated that "the results of this study provide an important pathomechanism underlying obesity-associated renal… cell damage."

Highlights

Unlike in normal-weight mice with kidney disease, a degradation process called autophagy is suppressed in obese mice with kidney disease. This suppression leads to kidney cell damage.

Obese kidney disease patients also have suppressed autophagy.

Study co-authors include Shinji Kume, Daisuke Koya, Yuki Tanaka, Yoshikata Morita, Masami Chin-Kanasaki, Hisazumi Araki, Keiji Isshiki, Shin-ichi Araki, Masakazu Haneda, Taiji Matsusaka, Atsunori Kashiwagi, and Hiroshi Maegawa.

Disclosures: The authors reported no financial disclosures.

The article, entitled "Obesity-mediated Autophagy Insufficiency Exacerbates Proteinuria-induced Tubulointerstitial Lesions," will appear online at http://jasn.asnjournals.org/ on October 3, 2013, doi: 10.1681/ASN.2012111080.

The editorial, entitled "Proximal Tubules Forget 'Self-Eating' When They Meet Western Meals," will appear online at http://jasn.asnjournals.org/ on October 3, 2013, doi: 10.1681/ASN.2013070794.

The content of this article does not reflect the views or opinions of The American Society of Nephrology (ASN). Responsibility for the information and views expressed therein lies entirely with the author(s). ASN does not offer medical advice. All content in ASN publications is for informational purposes only, and is not intended to cover all possible uses, directions, precautions, drug interactions, or adverse effects. This content should not be used during a medical emergency or for the diagnosis or treatment of any medical condition. Please consult your doctor or other qualified health care provider if you have any questions about a medical condition, or before taking any drug, changing your diet or commencing or discontinuing any course of treatment. Do not ignore or delay obtaining professional medical advice because of information accessed through ASN. Call 911 or your doctor for all medical emergencies.

Founded in 1966, and with more than 14,000 members, the American Society of Nephrology (ASN) leads the fight against kidney disease by educating health professionals, sharing new knowledge, advancing research, and advocating the highest quality care for patients.

Tracy Hampton | EurekAlert!
Further information:
http://www.asn-online.org/

More articles from Health and Medicine:

nachricht The cytoskeleton of neurons has been found to be involved in Alzheimer's disease
18.01.2019 | University of the Basque Country

nachricht Bioinspired nanoscale drug delivery method developed by WSU, PNNL researchers
10.01.2019 | Washington State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>