Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Obesity-Induced Fatty Liver Disease Reversed In Mice

30.01.2014
Epilepsy drug also decreased obesity-related blood sugar levels

Johns Hopkins researchers have discovered that valproic acid, a widely prescribed drug for treating epilepsy, has the additional benefits of reducing fat accumulation in the liver and lowering blood sugar levels in the blood of obese mice. A summary of their research appears in this month’s issue of the journal Molecular Pharmacology.


The liver cells (magenta) of untreated obese mice (left) contain many large, white droplets of fat while those of obese mice treated with valproic acid (right) have much less fat accumulation.

Used with permission of Molecular Pharmacology and Namandje Bumpus.

Fatty liver disease can lead to liver failure and is often caused by obesity and a high-fat diet. Obesity is also associated with the development of type 2 diabetes, which sabotages the body’s process for controlling blood sugar levels. A rapidly rising problem in the developed world, obesity currently affects over 90 million Americans.

Studying the ways in which the cytochrome P450 family of enzymes processes valproic acid, the Johns Hopkins biochemists found that it can activate the protein AMPK, which was already known to be a good drug target for treating metabolic disorders like type 2 diabetes and obesity.

The Bumpus laboratory studies how drugs are processed in cells by enzymes of the cytochrome P450 family. Humans have 57 of these enzymes, and several of them work on the drug valproic acid. In the course of their research, Namandjé Bumpus, Ph.D., assistant professor of pharmacology, and postdoctoral fellow Lindsay Avery, Ph.D., found that valproic acid could activate AMPK in mouse and human liver cells in a dose-dependent way.

“It was exciting to find that valproic acid can activate AMPK,” Bumpus says. “What’s even better is that its byproducts can activate AMPK at much lower doses. That’s a desirable quality if you want to eventually use it to treat people.”

Knowing that valproic acid is extensively processed by cytochrome P450 enzymes, the research team added a cytochrome P450 inhibitor to mouse and human liver cells and found that AMPK was no longer activated. This suggested that the byproducts of valproic acid, as opposed to valproic acid itself, were the molecules activating AMPK. To test this theory, they added four chemically modified versions of the drug to the cells and found that the derivatives were able to activate AMPK without valproic acid. In fact, they achieved higher activation of AMPK at one-fortieth the concentration.

To assess the uptake and breakdown of valproic acid in living organisms, they gave the drug to obese mice with high blood sugar levels, fatty livers and rapid weight gain. Treated mice showed decreased blood sugar levels, decreases in the size and the fat accumulation of their livers, and a stabilization of weight — rather than the continued weight gain experienced by untreated mice.

“The improvements seen in the health of these obese mice were very encouraging,” says Bumpus. “We hope that we will find similar results in obese people who take valproic acid.”

This work was supported by a grant from the National Institute of General Medical Sciences (R01GM103853).

Catherine Kolf | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Study shows novel protein plays role in bacterial vaginosis
13.12.2019 | University of Arizona Health Sciences

nachricht Illinois team develops first of a kind in-vitro 3D neural tissue model
12.12.2019 | University of Illinois College of Engineering

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>