Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel mathematical framework provides a deeper understanding of how drugs interact

14.11.2019

Researchers at the CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences have developed a new methodology characterizing more precisely how drugs influence each other when combined during treatment. Their analysis of over 30k drug pairs applied to cell lines identified 1,832 interactions between 242 different drugs and sheds new light on how drugs perturb the underlying molecular networks. The findings have now been published in the scientific journal Nature Communications.

Combining two or more drugs can be an effective treatment of diverse diseases, such as cancer. Yet, at the same time, the wrong drug combination can cause major side effects. Currently there is no systematic understanding of how different drugs influence each other.


First author Michael Caldera and last author Joerg Menche

Franzi Kreis / CeMM

Thus, elucidating how two given drugs interact, and whether they have a beneficial effect, would mean a major step towards drug development to treat diseases more effectively in the future.

On a molecular level, drugs cause complex perturbations of various cellular processes in our body. These processes are orchestrated by an intricate network of molecular interactions, the so-called interactome. Over the last decade, numerous studies have revealed a close relationship between the structure of the interactome and the functional organization of the molecular machinery within the cell.

This opened exciting opportunities for using network-based approaches to investigate the foundations of both healthy and disease states. Following this trend, Principal Investigator Jörg Menche and his group at CeMM developed a novel mathematical framework for mapping out precisely how different perturbations of the interactome influence each other.

The new study performed by Caldera et al., represents the first general approach to quantifying with precision how drugs interact with each other, based on a mathematical model that considers their high-dimensional effects. Their research reveals that the position of targets of a given drug on the interactome is not random but rather localized within so-called drug modules.

They found that the location of a drug module is linked to the specific cell morphological changes induced by the respective treatments, making morphology screens a valuable resource for the investigation of drug interactions. Further they identified various factors that contribute to the emergence of such interactions.

Most notably, the distance between two drug modules on the interactome plays a key role: Certain types of interactions are more likely depending on the exact proximity between the two respective drug modules. If the modules are too far away from each other, it is rather unlikely that an interaction will take place.

“We developed a completely new methodology to classify drug interactions. Previous methods could characterize interactions only as synergistic or antagonistic. Our methodology is able to distinguish 12 distinct interactions types and also reveals the direction of an interaction”, says Michael Caldera, first author of the study and PhD student at Jörg Menche’s Group.

The study of the Menche group has broadened the understanding of how drugs perturb the human interactome, and what causes drugs to interact. Moreover, the introduced methodology offers the first comprehensive and complete description of any potential outcome that may arise from combining two perturbations.

Finally, this methodology could also be applied to address other key challenges, such as dissecting the combined impact of genetic variations or predicting the effect of a drug on a particular disease phenotype. Their research forms a solid base for understanding and developing more effective drug therapies in the future.

Originalpublikation:

The study “Mapping the perturbome network of cellular perturbations” was published in Nature Communications on 13 November 2019. DOI: 10.1038/s41467-019-13058-9

Weitere Informationen:

https://cemm.at/news/?tx_news_pi1%5B%40widget_0%5D%5BcurrentPage%5D=2&cHash=...

Laura Alvarez | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Study shows novel protein plays role in bacterial vaginosis
13.12.2019 | University of Arizona Health Sciences

nachricht Illinois team develops first of a kind in-vitro 3D neural tissue model
12.12.2019 | University of Illinois College of Engineering

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>