Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Norovirus evades immune system by hiding out in rare gut cells

12.10.2017

Penn study informs vaccine development

Noroviruses are the leading cause of non-bacterial gastroenteritis in the world and are estimated to cause 267 million infections and 20,000 deaths each year. This virus causes severe diarrhea, nausea, and stomach pain.


A new mouse study shows that, even in immunized animals, noroviruses can escape the immune system and still spread by hiding out in an extremely rare type of cell in the gut.

Credit: Center for Disease Control and Prevention

Although often referred to as the "cruise ship" virus in the United States, noroviruses are an expensive and serious public health problem particularly among young children, the elderly, and immune-compromised patients. Now, in a new study published in Immunity this week, researchers from the Perelman School of Medicine at the University of Pennsylvania have used a mouse model to show that, even in immunized animals, noroviruses can escape the immune system and still spread by hiding out in an extremely rare type of cell in the gut.

"Current vaccines against norovirus have been ineffective despite eliciting strong antibody responses," said senior author E. John Wherry, PhD, a professor of Microbiology and director of the Penn Institute for Immunology. "Understanding the unique norovirus characteristic of hiding from the host immune system may explain its biology and present opportunities to improve vaccines and therapeutics."

While most infected people clear the virus within a few days, some individuals continue to shed virus for weeks to months after. Such persistently infected people may be a source of outbreaks, but it was unclear why the immune system fails to eliminate the virus in these cases.

"The cruise ship outbreaks of norovirus are high profile, but it happens everywhere - daycare centers, eldercare facilities, and more," said first author Vesselin T. Tomov, MD, PhD, an assistant professor of Gastroenterology. "Noroviruses can cause persistent infections, challenging the long-held view that they are transient pathogens."

The Penn investigators defined and tracked T-cell responses in mice infected with either an acute or chronic strain of mouse norovirus to gain insight into mechanisms of viral clearance and persistence. At first, they hypothesized that persistent norovirus infection caused T cells to become exhausted rendering them non-functioning, similar to other chronic viral infections such as HIV or hepatitis C. To their surprise, however, T cells remained functional even after months of norovirus infection.

The team then looked at the earliest stages of response by the immune system and found two phases to that response. During the initial days after infection, T cells reacted strongly to the virus and controlled it. But, after about three days, T cells could no longer detect norovirus in 50 to 70 percent of the mice infected with the chronic strain.

The researchers faced a paradox because the T cells responding to the virus appeared "ignorant" or "unable to see" the virus, yet there was continuous shedding of norovirus in mouse feces. To explain this conundrum, they next hypothesized that actively multiplying norovirus had been sequestered somewhere in the gut out of reach of T cells.

Tomov conducted a series of experiments to test that hypothesis. He eventually found evidence that norovirus does hide in rare gut cells that fail to communicate with T cells and alert them of the presence of the pathogen. "We found a novel escape mechanism where norovirus becomes essentially invisible to the immune system in the intestine while still producing large amounts of virus that is shed from the intestines," Tomov said.

Coauthors at Washington University have found that norovirus hides in specialized, ultra-rare cells of the gut lining, on the order of only a few hundred cells out of the billions that line the mouse gut. These cells act as mega factories for norovirus production, while allowing the virus to evade the immune system. The team is now working on this aspect of norovirus infection.

These findings might help explain why norovirus vaccines being tested have shown limited effectiveness and also hint that future vaccines would need to elicit immunity that acts very robustly in the first three days after infection before the virus moves into hiding. The results also dovetail with the fact that no one has yet found an animal reservoir for the virus. "There may be some people out there who are living with the chronic strain of the virus and are persistently, yet unknowingly, shedding it," Tomov said.

Next, the researchers plan to investigate how to improve protection against this virus by combining T cell and antibody approaches for vaccines. Identifying the cellular reservoir of norovirus may also enable the development of therapeutics to help prevent or purge persisting infection. In addition, testing whether similar mechanisms occur in humans is a major goal that will not only enable better vaccine development, but also help test for a potential role of norovirus as a co-factor in other intestinal diseases.

###

This work was supported by the National Institutes of Health (NIDDK T32-DK007066, NIDDK P30DK050306, U01-AI-095608, U19 AI AI082630, P01 AI AI112521, K08-DK097301).

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $6.7 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 20 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $392 million awarded in the 2016 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center -- which are recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report -- Chester County Hospital; Lancaster General Health; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2016, Penn Medicine provided $393 million to benefit our community.

Karen Kreeger | EurekAlert!

Further reports about: Norovirus T cells immune system norovirus infection

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes

17.07.2018 | Life Sciences

Electronic stickers to streamline large-scale 'internet of things'

17.07.2018 | Information Technology

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>