Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered cell mechanism uses amplified nitric oxide to fight C. diff

23.08.2011
Research involving Case Western Reserve featured in the Aug. 21 online issue of Nature Medicine

Groundbreaking research encompassing Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, has uncovered a natural defense mechanism that is capable of inactivating the toxin that spreads Clostridium difficile, or C. diff, an increasingly common bacterial infection in hospitals and long-term care settings. The research has immediate implications for developing a new form of treatment for antibiotic-resistant bacteria.

The newly discovered mechanism involves a nitric oxide (NO)-based molecule, S-nitrosoglutathione (GSNO), which binds to the toxins secreted by C. diff bacteria to deactivate them and prevent them from penetrating and damaging cells. The mechanism encompasses S-nitrosylation (SNO), a protein modification that attaches NO to cysteine residues in enzymes and other proteins.

"We've discovered a natural defense against C. diff that is based on nitric oxide, a ubiquitous molecule that is often produced by immune cells to kill pathogens," says Jonathan Stamler, MD, director of the Institute for Transformative Molecular Medicine and the Robert S. and Sylvia K. Reitman Family Foundation Distinguished Chair in Cardiovascular Innovation at the Case Western Reserve University Cardiovascular Center and University Hospitals Harrington-McLaughlin Heart & Vascular Institute. "Understanding how this mechanism deactivates toxins provides a basis for developing new therapies that can target toxins directly and thereby keep bacterial infections, like C. diff, from spreading," he says.

Dr. Stamler discovered the molecule GSNO, as well as the nitrosylation mechanism for control of protein function, in his previous research. He is one of the senior investigators studying how the protein modification inhibits the virulence of C. diff toxins. The resulting research findings appear in the Aug. 21 online issue of Nature Medicine.

In addition to Dr. Stamler, investigators from the University of Texas in Galveston, the University of California, Tufts University and the Commonwealth Medical College collaborated on the research. The University of Texas researchers first determined that NO helped protect cells against C. diff and approached Dr. Stamler to determine if SNO was also involved.

C. diff is the most common cause of hospital-acquired infectious diarrhea and life-threatening inflammation of the colon. It originates when normal, competing bacteria in the gastrointestinal tract are wiped out by the use of antibiotics. This allows C. diff bacteria to grow out of control.

The C. diff bacteria secrete a toxin that cleaves or cuts itself to generate a fragment that can penetrate cells, damaging them and resulting in a hemorrhagic injury to the gastrointestinal tract. The toxin is activated when inositolhexakisphosphate (InsP6), a substance prevalent in leafy vegetables and the gastrointestinal tract, binds to it, enabling the toxin to change shape and cleave itself.

The research shows that upon activation, GSNO, a NO donor molecule, binds to the toxin and nitrosylates it. This can only occur when InsP6 binds to the toxin.

The change in shape that results when InsP6 binds to the toxin is what enables the GSNO to target and inactivate the toxin by directly binding to the active site. There, the GSNO can nitrosylate (SNO) the cysteine to inactivate the toxin. These findings are especially significant as they suggest that GSNO has evolved to recognize shape changes in the toxins it targets.

Prior to this, researchers knew GSNO could produce SNO in many classes of proteins but there was little to no precedent for it binding to toxins or explaining how this SNO modification protects against infectious agents, Dr. Stamler says.

"The new research suggests GSNO, and S-nitrosylation, more generally, may have a universal function in protecting cells against microbial proteins, many of which have a design that is conducive to being s-nitrosylated by GSNO," Dr. Stamler says. "In this regard, GSNO-like molecules may represent a new class of antibiotics that can be developed, exploiting the shape changes in numerous bacterial proteins."

In their work, researchers also noted that increased levels of GSNO in the gut of C. diff-infected animals and increased levels of SNO-toxin in stools of patients, directly correlated with deactivation of the toxin, further confirming that the natural mechanism works to reduce disease activity in people. This provides a basis for measuring how much nitric oxide, a key molecule in cell immune activity, has bound to toxins to make SNO and limit the spread of bacteria.

The current treatment of C. diff is difficult and the infection often recurs. Resistance to antibiotics is also a serious worry. The researchers are currently developing a new class of anti-toxin treatment based on these findings. One advantage of such antitoxins, says Dr. Stamler, is that resistance won't occur. The researchers hope that the new treatment can enter clinical trials very rapidly.

Kevin Mayhood | EurekAlert!
Further information:
http://www.case.edu

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>