Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test detects all viruses that infect people, animals

30.09.2015

A new test detects virtually any virus that infects people and animals, according to research at Washington University School of Medicine in St. Louis, where the technology was developed.


A new test developed at Washington University School of Medicine in St. Louis can detect virtually any virus that infects people and animals, including the Ebola virus (above).

Credit: National Institute of Allergy and Infectious Diseases

Many thousands of viruses are known to cause illness in people and animals, and making a diagnosis can be an exhaustive exercise, at times requiring a battery of different tests. That's because current tests aren't sensitive enough to detect low levels of viral bugs or are limited to detecting only those viruses suspected of being responsible for a patient's illness.

"With this test, you don't have to know what you're looking for," said the study's senior author, Gregory Storch, MD, the Ruth L. Siteman Professor of Pediatrics. "It casts a broad net and can efficiently detect viruses that are present at very low levels. We think the test will be especially useful in situations where a diagnosis remains elusive after standard testing or in situations in which the cause of a disease outbreak is unknown."

Results published online in September in the journal Genome Research demonstrate that in patient samples the new test - called ViroCap - can detect viruses not found by standard testing based on genome sequencing. The new test could be used to detect outbreaks of deadly viruses such as Ebola, Marburg and severe acute respiratory syndrome (SARS), as well as more routine viruses, including rotavirus and norovirus, both of which cause severe gastrointestinal infections.

The test sequences and detects viruses in patient samples and is just as sensitive as the gold-standard polymerase chain reaction (PCR) assays, which are used widely in clinical laboratories. However, even the most expansive PCR assays can only screen for up to about 20 similar viruses at the same time.

The Washington University researchers are making the technology they developed publicly available to scientists and clinicians worldwide, for the benefit of patients and research.

The researchers evaluated the new test in two sets of biological samples - for example, from blood, stool and nasal secretions - from patients at St. Louis Children's Hospital. In the first, standard testing that relied on genome sequencing had detected viruses in 10 of 14 patients. But the new test found viruses in the four children that earlier testing had missed. Standard testing failed to detect common, everyday viruses: influenza B, a cause of seasonal flu; parechovirus, a mild gastrointestinal and respiratory virus; herpes virus 1, responsible for cold sores in the mouth; and varicella-zoster virus, which causes chickenpox.

In a second group of children with unexplained fevers, standard testing had detected 11 viruses in the eight children evaluated. But the new test found another seven, including a respiratory virus called human adenovirus B type 3A, which usually is harmless but can cause severe infections in some patients.

In all, the number of viruses detected in the two patient groups jumped to 32 from 21, a 52 percent increase.

"The test is so sensitive that it also detects variant strains of viruses that are closely related genetically," said corresponding author Todd Wylie, an instructor of pediatrics. "Slight genetic variations among viruses often can't be distinguished by currently available tests and complicate physicians' ability to detect all variants with one test."

In addition, because the test includes detailed genetic information about various strains of particular viruses, subtypes can be identified easily. For example, the study showed that while standard testing identified a virus as influenza A, which causes seasonal flu, the new test indicated that the virus was a particularly harsh subtype called H3N2.

Last flu season, H3N2 contributed to some 36,000 deaths in the United States. And in some patients - particularly young children, older adults and people with weakened immune systems - knowing that the H3N2 strain is present may alter treatment.

To develop the test, the researchers targeted unique stretches of DNA or RNA from every known group of viruses that infects humans and animals. In all, the research team included 2 million unique stretches of genetic material from viruses in the test. These stretches of material are used as probes to pluck out viruses in patient samples that are a genetic match. The matched viral material then is analyzed using high-throughput genetic sequencing. As completely novel viruses are discovered, their genetic material could easily be added to the test, Storch said.

The researchers plan to conduct additional research to validate the accuracy of the test, so it could be several years before it is clinically available.

"It also may be possible to modify the test so that it could be used to detect pathogens other than viruses, including bacteria, fungi and other microbes, as well as genes that would indicate the pathogen is resistant to treatment with antibiotics or other drugs," said co-author Kristine Wylie, PhD, assistant professor of pediatrics.

In the meantime, the technology can be used by scientists to study viruses in a research setting. Kristine Wylie investigates the viruses that set up residence in and on the human body, collectively known as the virome. The new test will provide a way to capture the full breadth and depth of such viruses, and deepen understanding of how they play a role in keeping the body healthy.

###

The research is funded by the National Institutes of Health (NIH).

Wylie TN, Wylie KM, Herter BN and Storch GA. Enhanced virome sequencing using targeted sequence capture. Genome Research, online Sept. 22, 2015.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Media Contact

Diane Duke Williams
williamsdia@wustl.edu
314-286-0111

 @WUSTLmed

http://www.medicine.wustl.edu 

Diane Duke Williams | EurekAlert!

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>