Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New role for immune cells in preventing diabetes and hypertension

17.03.2017

Immune cells which are reduced in number by obesity could be a new target to treat diseases such as type 2 diabetes and hypertension that affect overweight people, according to a collaborative study between The University of Manchester, Lund University and the University of Salford.

In a study published in the journal Scientific Reports, the researchers from immunology and cardiovascular backgrounds investigated a type of immune cell called eosinophils. Eosinophils are present in a layer of fat tissue called the perivascular adipose tissue (PVAT), which surrounds blood vessels and helps to maintain normal blood vessel function by reducing artery contraction.


Immune cells which are reduced in number by obesity could be a new target to treat diseases such as type 2 diabetes and hypertension that affect overweight people, according to a collaborative study between the University of Manchester, Lund University and the University of Salford.

Credit: The University of Manchester

The current research by the researchers found that eosinophils were considerably reduced in the PVAT in obesity in mice, and that the PVAT function was severely impaired, contributing to type 2 diabetes and hypertension. This is not something that has previously been observed.

Dr Sheena Cruickshank, the lead researcher on the Wellcome Trust-funded study, said: "This type of immune cell is present in many parts of the body and was once thought to just act in parasitic infections and allergies, but it's fast becoming clear that they have a significant effect on lots of aspects of health and immunity".

"Our study showed that in fact the secretions from eosinophils have a profound effect on how the blood vessels operate and when they are missing, as in obesity, serious health problems can start to develop."

The role of the eosinophils also opens up new opportunities to investigate treatments for type 2 diabetes and hypertension.

PVAT from fat that lack eosinophils could quickly be rescued by addition of eosinophils, demonstrating that there is the potential for a treatment based on restoring this function.

The researchers observed that the eosinophils influenced the release of nitric oxide and a protein called adiponectin, which control healthy PVAT function. This appears to be a unique function of these immune cells. The researchers are particularly excited by how quickly the eosinophils could restore PVAT function, showing just how potent they may be.

Dr Cruickshank added: "These immune cells have been traditionally overlooked but this study shows for the first time that they have a direct role to play in processes in the body beyond the immune system.

"They seem to be incredibly important in a number of processes and this presents us with an exciting new area to investigate for a whole range of illnesses."

The paper 'Eosinophils are key regulators of perivascular adipose tissue and vascular functionality' will be published in Scientific Reports.

Media Contact

Jamie Brown
jamie.brown@manchester.ac.uk
44-161-275-8383

 @UoMNews

http://www.manchester.ac.uk 

Jamie Brown | EurekAlert!

More articles from Health and Medicine:

nachricht UC San Diego researchers develop sensors to detect and measure cancer's ability to spread
06.12.2018 | University of California - San Diego

nachricht New cancer immunotherapy approach turns immune cells into tiny anti-tumor drug factories
05.12.2018 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>