Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New process allows tailor-made malaria research

16.02.2018

Model of infection from Tübingen successfully tested in Africa: volunteers are being infected with malaria parasites in a controlled manner - New findings on naturally acquired immunity and resistance to malaria

Scientists at the Institute of Tropical Medicine of the University of Tübingen, the German Center for Infection Research (DZIF), and of Sanaria Inc. have developed an infection system that allows malaria to be studied directly on humans: Volunteers are being infected with malaria parasites in a controlled manner.


The method has now been used for the first time in a clinical study at the Center de Recherches Médicales de Lambaréné (CERMEL) in Gabon to investigate the naturally acquired immunity to malaria and the effect of the sickle cell gene. Carriers of the sickle cell gene are known to have natural resistance to malaria and develop less frequent severe malaria. The findings appeared recently in the American Journal of Tropical Medicine and Hygiene.

Every year, more than 200 million people fall ill with the tropical disease malaria, predominantly in Africa. The causative agents are parasites, so-called plasmodia, which are transmitted by mosquito bites. The symptoms of malaria include high, recurrent fever, which alternates with fever-free phases, chills and gastrointestinal discomfort. In children under five years in particular, the disease often leads to death.

"People who are repeatedly infected with malaria parasites can acquire a natural immunity to the disease, this is well known," explains Professor Peter Kremsner, Director of the Institute for Tropical Medicine in Tübingen and coordinator of the Malaria research unit at the DZIF. "However, the understanding of the underlying mechanisms is still incomplete."

To investigate the mechanisms of the natural resistance to sickle cell disease and immunity to malaria, the research team used the controlled human malaria infection (CHIM) system developed by the Tübingen and the Sanaria teams, in a study conducted in Gabon, Central Africa: Volunteers were given one dose of Sanaria® PfSPZ Challenge, which contains the malaria parasite Plasmodium falciparum. The research team was thus able to examine the infection rates and symptoms of adults with and without the sickle cell gene. People who are exposed in Gabon to the malaria pathogen throughout their lives are regarded as "semi-immune" as adults.

In total, eleven semi-immune Gabonese with normal hemoglobin and nine semi-immune Gabonese with the sickle cell gene were injected with malaria parasites. Additionally, five European non-immune controls with normal hemoglobin received one dose. Subjects were followed closely for 28 days after injection and a blood sample was taken daily from day five. At the end of the study, all volunteers received a malaria medication to stop the infection.

As expected, naturally acquired immunity to malaria prolonged the time to the onset of the parasites in the blood. The volunteers either fell ill later, or did not fall ill at all. In volunteers with the sickle cell gene, this time was delayed even more. Interestingly, significantly fewer malaria cases were found in the group of volunteers with the sickle cell gene.

"The study results provide new insights into how naturally acquired immunity to malaria works," says Dr. Bertrand Lell, Director of CERMEL "The findings provide us an approach to investigating the mechanisms by which naturally acquired immunity and sickle cell trait reduce the impact of malaria, and developing interventions like vaccines that mimic them."

Publication:
Bertrand Lell, Benjamin Mordmüller, Jean-Claude Dejon Agobe, Josiane Honkpehedji, Jeannot Zinsou, Juliana Boex Mengue, Marguerite Massinga Loembe, Ayola Akim Adegnika, Jana Held, Albert Lalremruata, The Trong Nguyen, Meral Esen, Natasha KC, Adam J. Ruben, Sumana Chakravarty, B. Kim Lee Sim, Peter Billingsley, Eric James, Thomas L. Richie, Stephen L. Hoffman, Peter G. Kremsner: Impact of Sickle Cell Trait and Naturally Acquired Immunity on Uncomplicated Malaria after Controlled Human Malaria Infection in Adults in Gabon. American Journal of Tropical Medicine, https://www.ncbi.nlm.nih.gov/pubmed/29260650

Contact:
Professor Peter Kremsner
University of Tübingen
Institut für Tropenmedizin
DZIF-Koordinator „Malaria“
Phone: 07071/ 29 87179
peter.kremsner@uni-tuebingen.de

Dr. Bertrand Lell
Centre de Recherches Médicale de Lambaréné (CERMEL)
bertrand.lell@cermel.org

Antje Karbe | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Experiments in mice and human cells shed light on best way to deliver nanoparticle therapy for cancer
26.03.2020 | Johns Hopkins Medicine

nachricht Too much salt weakens the immune system
26.03.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

Phage capsid against influenza: Perfectly fitting inhibitor prevents viral infection

31.03.2020 | Life Sciences

A 'cardiac patch with bioink' developed to repair heart

31.03.2020 | Life Sciences

Artificial intelligence can speed up the detection of stroke

31.03.2020 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>