Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New model predicts Ebola epidemic in Liberia could be ended by June

14.01.2015

The Ebola epidemic in Liberia could likely be eliminated by June if the current high rate of hospitalization and vigilance can be maintained, according to a new model developed by ecologists at the University of Georgia and Pennsylvania State University.

The model includes such factors as the location of infection and treatment, the development of hospital capacity and the adoption of safe burial practices and is "probably the first to include all those elements," said John Drake, an associate professor in the UGA Odum School of Ecology who led the project. The study appears in the open access journal PLOS Biology Jan. 13.


John Drake, an associate professor in the University of Georgia Odum School of Ecology, led a project to develop a new model that determined the Ebola epidemic in Liberia could likely be eliminated by June if the current high rate of hospitalization and vigilance can be maintained.

Credit: Andrew Davis Tucker/University of Georgia

Drake said that the UGA model should be useful to public health officials as they continue to combat the Ebola epidemic because it offers both general insights and realistic forecasts, something few models are able to do.

During the fall of 2014, the authors ran the model for five different hospital capacity scenarios. For the worst case, with no further increase in hospital beds, the median projection was for 130,000 total cases through the end of 2014; for the best case--an increase of 1,400 more beds, for roughly 1,700 total or an 85 percent hospitalization rate--the median projection was 50,000 cases.

After the authors updated it with more recent information collected through Dec. 1, the model projected that, if an 85 percent hospitalization rate can be achieved, the epidemic should be largely contained by June.

"That's a realistic possibility but not a foregone conclusion," Drake said. "What's needed is to maintain the current level of vigilance and keep pressing forward as hard as we can."

Epidemic modeling is an important tool that helps public health officials design, target and implement policies and procedures to control disease transmission, and several models of the 2014 Ebola epidemic have already been published. According to Drake, many of these models seek to estimate the disease's reproductive number--the number of new cases that one infected individual can generate.

"This is useful because it says how far transmission must be reduced to contain the epidemic," he said. "Our model does this too, but it does other stuff as well. It aims to be intermediate in complexity--it captures all the things we think to be most important and ignores the rest."

Those important variables include infection and treatment setting, individual variation in infectiousness, the actual build-up of hospital capacity over time and changing burial practices. The researchers used a mathematical formulation known as branching processes--a method for keeping track of all possible epidemic outcomes in proportion to their probabilities--calibrated with newly developed methods.

To build this more complex model, Drake and his colleagues started with information gleaned from earlier Ebola outbreaks. They included data about variables such as the numbers of patients hospitalized health care workers infected, which allowed them to estimate the level of under-reporting; rates of transmission in hospitals, the community and from funerals; and the effectiveness of infection control measures.

Once they had a working model with plausible parameters, they fine-tuned it using data from the World Health Organization and the Liberia Ministry of Health for the period from July 4 through Sept. 2, 2014. This included information about new cases as well as changes in behavior and public health interventions during that time, such as the addition of roughly 300 hospital beds and the adoption of safer burial practices.

Liberia continued to add hospital beds after Sept. 2, so in mid-December, Drake and his team updated the model to include information collected through Dec.1. Using reported data rather than estimates from the earlier version of the model significantly cut down on the range of future possibilities, showing that the response by the Liberian government and international groups had greatly reduced the likelihood of a massive epidemic.

The model should prove useful beyond the current Ebola crisis, Drake said. "We introduced a new method for model fitting--the method of plausible parameter sets--that could be used in future rapid response scenarios."

Plausible parameter sets use recorded data that falls within the range of possibilities generated by the model at least 500 times, meaning that the model "fits" the data closely. This keeps the model's projections in line with observed reality, making it particularly useful for investigating a wide range of realistic potential interventions and accounting for the impacts of human behavior on disease transmission.

###

The study is available online at http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002056.

Model coauthors were RajReni B. Kaul, Laura W. Alexander, Suzanne M. O'Regan, Andrew M. Kramer, J. Tomlin Pulliam and Andrew W. Park of UGA's Odum School and Matthew J. Ferrari of Pennsylvania State University. The research was conducted under the auspices of the Ebola Modeling Working Group of the National Institutes of Health Institute of General Medical Sciences Models of Infectious Disease Agent Study.

For more information about the Odum School of Ecology, see http://www.ecology.uga.edu

Media Contact

John M. Drake
jdrake@uga.edu
706-583-5539

 @universityofga

http://www.uga.edu 

John M. Drake | EurekAlert!

Further reports about: Ebola Health Odum UGA disease transmission epidemic estimate public health variables

More articles from Health and Medicine:

nachricht UC San Diego cancer scientists identify new drug target for multiple tumor types
12.07.2019 | University of California - San Diego

nachricht Bacteria engineered as Trojan horse for cancer immunotherapy
04.07.2019 | Columbia University School of Engineering and Applied Science

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

Im Focus: First results of the new Alphatrap experiment

Physicists at the Max Planck Institute for Nuclear Physics in Heidelberg report the first result of the new Alphatrap experiment. They measured the bound-electron g-factor of highly charged (boron-like) argon ions with unprecedented precision of 9 digits. In comparison with a new highly accurate quantum electrodynamic calculation they found an excellent agreement on a level of 7 digits. This paves the way for sensitive tests of QED in strong fields like precision measurements of the fine structure constant α as well as the detection of possible signatures of new physics. [Physical Review Letters, 27 June 2019]

Quantum electrodynamics (QED) describes the interaction of charged particles with electromagnetic fields and is the most precisely tested physical theory. It...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

A human liver cell atlas

15.07.2019 | Life Sciences

No more trial-and-error when choosing an electrolyte for metal-air batteries

15.07.2019 | Power and Electrical Engineering

Possibilities of the biosimilar principle of learning are shown for a memristor-based neural network

15.07.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>