Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New malaria analysis method reveals disease severity in minutes

14.08.2017

Left untreated, malaria can progress from being mild to severe -- and potentially fatal -- in 24 hours. So researchers at the University of British Columbia developed a method to quickly and sensitively assess the progression of the mosquito-borne infectious disease, which remains a leading killer in low-income countries.

One way malaria wreaks havoc on the body is by causing excessive amounts of toxic heme, the non-protein component of hemoglobin, to accumulate in the bloodstream. Among other things, this free heme induces oxidative stress in red blood cells (RBCs), leading to their rigidification, destruction and subsequent removal from circulation -- a condition known as hemolytic anemia.


Red blood cells become less deformable as they undergo heme-induced oxidative stress caused by malaria parasites.

Credit: Kerryn Matthews, University of British Columbia

In their study, which appeared in Integrative Biology, the UBC investigators found that RBCs become increasingly rigid in direct correlation with the concentration of oxidized heme, or hemin, in the blood. Since hemin is difficult to measure directly -- it tends to insert itself into cell membranes -- monitoring changes in RBC deformability can therefore serve as a reliable alternative marker of hemin-induced oxidative stress and malaria progression.

"Because this method is mechanical, it's well suited for use in resource-poor countries, where the vast majority of malaria transmission takes place," says Kerryn Matthews, a postdoctoral fellow at UBC and the study's lead author. "Other methods of analyzing malaria severity require training or expensive equipment or chemicals that are not readily available in developing nations."

To measure RBC deformability quickly and sensitively, the UBC investigators developed the "multiplex fluidic plunger": a simple microfluidic device consisting of a parallel array of 34 funnel-shaped, micro-sized channels across which uniform, carefully controlled pressures can be simultaneously applied.

By loading the plunger with whole blood, docking an RBC at each channel and applying progressively higher pressures until the RBCs are squeezed through -- or not, if an RBC is too stiff -- one is able to determine the rigidity, or cortical tensions, of many cells at once and build an RBC deformability profile in minutes.

"The device can be easily integrated with a conventional microscope coupled with a digital camera," says Matthews. "And the accompanying software, which does all the analysis and records the pressures, is simple to use."

In addition to indicating the status of a malaria infection, RBC deformability information would be valuable in the development of antimalarial drugs, as well as in illuminating the mechanism by which RBCs are sequestered from circulation and destroyed.

Healthy RBCs are extremely flexible, capable of squeezing through spaces -- the tiniest blood vessels, for example, or the channels between cells -- that are just fractions of their original size. By rendering them less deformable, malaria parasites impair blood flow and ultimately cause organ failure and possibly death.

According to the World Health Organization, malaria killed an estimated 429,000 people and caused approximately 212 million clinical episodes in 2015. It primarily affects children and pregnant women in poor tropical and subtropical countries.

Media Contact

Thomas Horacek
thomas.horacek@ubc.ca
604-827-5266

 @UBCnews

http://www.ubc.ca 

Thomas Horacek | EurekAlert!

More articles from Health and Medicine:

nachricht Collagen nanofibrils in mammalian tissues get stronger with exercise
14.12.2018 | University of Illinois College of Engineering

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>