Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discoveries in age-related macular degeneration revealed in industry and academia

12.12.2014

Insilico Medicine along with scientists from Vision Genomics and Howard University shed light on AMD disease, introducing the opportunity for eventual diagnostic and treatment options.

The scientific collaboration between Vision Genomics, Inc., Howard University, and Insilico Medicine, Inc., has revealed encouraging insight on the AMD disease using an interactome analysis approach. Resources such as publicly available gene expression data, Insilico Medicine's original algorithm OncoFinderTM, and AMD MedicineTM from Vision Genomics allowed discovery of signaling pathways activated during AMD disease.

"We are thrilled to collaborate with Alex Zhavaronkov and Evgeny Makarev, and their team at InSilico Medicine. Big Data analysis is part of the future of medicine, and with our technique of signaling pathway activation analysis, we will decipher the genetic network alterations that lead to age-related macular degeneration (AMD), and eventually human aging itself", said Antonei Benjamin Csoka, PhD, CEO of Vision Genomics, LLC, and Assistant Professor at Howard University.

The research publication titled "Pathway activation profiling reveals new insights into Age-related Macular Degeneration and provides avenues for therapeutic interventions" was accepted by one of aging research's top-rated journals "Aging", detailing these findings and methodology. This study not only validates the efficacy of interactome analysis within aging, but also allows the investigation of cellular populations within AMD models.

"We are happy to collaborate with Antonei Benjamin Csoka's teams at both Vision Genomics and Howard University on this exciting project. Coupling Big Data with advanced signaling pathway activation analysis may help find new therapeutic approaches for age-related macular degeneration (AMD), a disease that holds many keys to understanding human aging", said Evgeny Makarev, PhD, Director of Aging Research at Insilico Medicine.

On December 9th Insilico Medicine, Inc announced the appointment of 2013 Nobel Laureate in Chemistry, Michael Levitt, to its Scientific Advisory Board. Dr. Levitt's background in computational modeling focused on understanding protein folding processes and molecular interactions, may turn to be extremely valuable for compound discovery related to AMD and other age-related diseases.

The concept utilized by Insilico Medicine involves identifying the difference between several signaling states on a tissue-specific level, be it health and disease, or young and old, and evaluating a large number of drugs and drug combinations that can modulate the difference using advanced parametric and machine-learned algorithms.

"To create more value from our predictions we will need to identify compounds that are even more effective than top-scoring drugs and that would require multi-scale modeling of macromolecules, the field pioneered by Dr. Michael Levitt ", said Alex Zhavoronkov, PhD, CEO of Insilico Medicine, Inc. Insilico Medicine continues to be represented from top institutions, including Stanford University, Johns Hopkins University, and New York University. With this broad range of expertise, Insilico and its collaborators will pursue AMD disease further and utilize the newly discovered activated pathways as a foundation.

About Insilico Medicine

Insilico Medicine is a Baltimore-based company utilizing advances in genomics and big data analysis for in silico drug discovery and drug repurposing for aging and age-related diseases. The company uses the GeroScope™ and OncoFinder™ packages for aging and cancer research. Through internal expertise and extensive collaborations with brilliant scientists, institutions, and highly credible pharmaceutical companies, Insilico Medicine seeks to discover new drugs and drug combinations for personalized preventative medicine.

For more information on Insilico Medicine, Inc. please visit http://www.insilicomedicine.com

Please contact:

Michael Petr
Market Research Associate
michael.petr@insilicomedicine.com

Michael Petr | EurekAlert!

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>