Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New clues about the risk of cancer from low-dose radiation

11.03.2015

Berkeley Lab research could lead to ways to ID people particularly susceptible to cancer

Scientists from the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have uncovered new clues about the risk of cancer from low-dose radiation, which in this research they define as equivalent to 100 millisieverts or roughly the dose received from ten full-body CT scans.

They studied mice and found their risk of mammary cancer from low-dose radiation depends a great deal on their genetic makeup. They also learned key details about how genes and the cells immediately surrounding a tumor (also called the tumor microenvironment) affect cancer risk.

In mice that are susceptible to mammary cancer from low-dose radiation, the scientists identified more than a dozen regions in their genomes that contribute to an individual's sensitivity to low-dose radiation. These genome-environment interactions only become significantly pronounced when the mouse is challenged by low-dose radiation.

The interactions also have a big impact at the cellular level. They change how the tumor microenvironment responds to cancer. Some of these changes can increase the risk of cancer development, the scientists found.

They report their research in the March 9 issue of the journal Scientific Reports.

Because mice and humans share many genes, the research could shed light on the effects of low-dose radiation on people. The current model for predicting cancer risk from ionizing radiation holds that risk is directly proportional to dose. But there's a growing understanding that this linear relationship may not be appropriate at lower doses, since both beneficial and detrimental effects have been reported.

"Our research reinforces this view. We found that cancer susceptibility is related to the complex interplay between exposure to low-dose radiation, an individual mouse's genes, and their tumor microenvironment," says Jian-Hua Mao of Berkeley Lab's Life Sciences Division.

Mao led the research in close collaboration with fellow Life Science Division researchers Gary Karpen, Eleanor Blakely, Mina Bissell, and Antoine Snijders, and Mary Helen Barcellos-Hoff of New York University School of Medicine.

The identification of these genetic risk factors could help scientists determine whether some people have a higher cancer risk after exposure to low-dose radiation. It could lead to genetic screening tests that identify people who may be better served by non-radiation therapies and imaging methods.

The scientists used a comprehensive systems biology approach to explore the relationship between genes, low-dose radiation, and cancer. To start, Mao and colleagues developed a genetically diverse mouse population that mimics the diversity of people. They crossed a mouse strain that is highly resistant to cancer with a strain that is highly susceptible. This yielded 350 genetically unique mice. Some were resistant to cancer, some were susceptible, and many were in between.

Next, Mao and colleagues developed a way to study how genes and the tumor microenvironment influence cancer development. They removed epithelial cells from the fourth mammary gland of each mouse, leaving behind the stromal tissue. Half of the mice were then exposed to a single, whole-body, low dose of radiation. They then implanted genetically identical epithelial cells, which were prone to cancer, into the fourth mammary glands that were previously cleared of their epithelial cells.

"We have genetically different mice, but we implanted the same epithelial cells into all of them," says Mao. "This enabled us to study how genes and the tumor microenvironment--not the tumor itself--affect tumor growth."

The scientists then tracked each mouse for 18 months. They monitored their tumor development, the function of their immune systems, and the production of cell-signaling proteins called cytokines. The researchers also removed cancerous tissue and examined it under a microscope.

They found that low-dose radiation didn't change the risk of cancer in most mice. A small minority of mice was actually protected from cancer development by low-dose radiation. And a small minority became more susceptible.

In this latter group, they found thirteen gene-environment interactions, also called "genetic loci," which contribute to the tumor susceptibility when the mouse is exposed to low-dose radiation. How exactly these genetic loci affect the tumor microenvironment and cancer development is not yet entirely understood.

"In mice that were susceptible to cancer, we found that their genes strongly regulate the contribution of the tumor microenvironment to cancer development following exposure to low-dose radiation," says Mao.

"If we can identify similar genetic loci in people, and if we could find biomarkers for these gene-environment interactions, then perhaps we could develop a simple blood test that identifies people who are at high risk of cancer from low-dose radiation," says Mao.

###

The research was supported by the Department of Energy's Office of Science (Office of Biological and Environmental Research).

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.

Media Contact

Dan Krotz
dakrotz@lbl.gov
510-486-4019

 @BerkeleyLab

http://www.lbl.gov 

Dan Krotz | EurekAlert!

More articles from Health and Medicine:

nachricht Collagen nanofibrils in mammalian tissues get stronger with exercise
14.12.2018 | University of Illinois College of Engineering

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>