Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New cancer immunotherapy approach turns immune cells into tiny anti-tumor drug factories

05.12.2018

In lab and mouse experiments, UC San Diego School of Medicine researchers developed a method to leverage B cells to manufacture and secrete tumor-suppressing microRNAs

Cancer immunotherapy -- efforts to better arm a patient's own immune system to attack tumors -- has shown great potential for treating some cancers. Yet immunotherapy doesn't work for everyone, and some types of treatment can cause serious side effects.


UC San Diego School of Medicine researchers developed a method to use B cells to manufacture and secrete microRNA-containing vesicles and showed they can inhibit tumor growth in mice.

Credit: UC San Diego Health

In a new approach, researchers at University of California San Diego School of Medicine are turning B cells, best known for producing antibodies, into factories that assemble and secrete vesicles or sacs containing microRNAs. Once internalized by cancer cells, these small pieces of genetic material dampen a gene that spurs tumor growth. In mice, breast tumors treated with this approach were fewer and significantly smaller than in untreated tumors.

The study is published in the December 4 issue of Scientific Reports.

"Once further developed, we envision this method could be used in situations where other forms of immunotherapy don't work," said senior author Maurizio Zanetti, MD, professor of medicine at UC San Diego School of Medicine and head of the Laboratory of Immunology at UC San Diego Moores Cancer Center.

"The advantages are that this type of treatment is localized, meaning potentially fewer side effects. It's long-lasting, so a patient might not need frequent injections or infusions. And it would likely work against a number of different tumor types, including breast cancer, ovarian cancer, gastric cancer, pancreatic cancer and hepatocellular carcinoma."

MicroRNAs don't encode proteins. Instead, microRNAs bind messenger RNAs that do encode proteins, inhibiting their translation or hastening their degradation. Normal cells use microRNAs to help fine-tune which genes are dialed up or down at different times. MicroRNAs tend to be less active in cancer cells, which can allow growth-related proteins to run wild.

In this study, Zanetti and team used miR-335, a microRNA that specifically dampens SOX4, a transcription factor that promotes tumor growth. They added a miR-335 precursor to B cells in the lab.

Once inside, through a naturally occurring process, the cells convert the precursor into mature, active miR-335 and package it into vesicles, small, membrane-coated sacs that bud off from the cell. Each B cell can produce 100,000 miR-335-containing vesicles per day -- enough to treat 10 cancer cells.

To test this new system, the researchers treated human breast cancer cells with miR-335-containing vesicles or sham vesicles in the lab. Then they transplanted the cancer cells to mice. After 60 days, 100 percent (5/5) of the mice with mock-treated cancer cells had large tumors. In contrast, 44 percent (4/9) of the mice with miR-335 vesicle-treated cancer cells had tumors. On average, the tumors in the treated mice were more than 260 times smaller than those in the mock-treated mice (7.2 vs. 1,896 mm3).

And the treatment was long-lasting -- miR-335 levels were still elevated in the treated mice 60 days after the vesicles and cancer cells were transplanted.

"We were surprised to find that even small changes in cancer cell gene expression after miR-335 treatment were associated with specific down-regulation of molecules key to tumor growth," said study co-author Hannah Carter, PhD, assistant professor of medicine at UC San Diego School of Medicine.

Other research groups and pharmaceutical companies are using tumor suppressor microRNAs therapeutically. What's new here, said researchers, is the method for producing and delivering them.

According to Zanetti, this therapy could be developed in two ways. First, by first harvesting vesicles from B cells in a lab, then administering only the vesicles, as they did here, or second, by administering the B cells themselves. He says the challenge now will be to develop ways to ensure the B cells or vesicles get as close to a tumor as possible. This would be easier in some types of cancer, where the tumor is readily accessible by injection. But many cancers are difficult to access. Zanetti and colleagues are currently working to improve the delivery system, maximize efficiency and diminish side effects.

"Ideally, in the future we could test patients to see if they carry a deficiency in miR-335 and have an overabundance of SOX4," Zanetti said. "Then we'd treat only those patients, cases where we know the treatment would most likely work. That's what we call personalized, or precision, medicine. We could also apply this technique to other microRNAs with other targets in cancer cells and in other cell types that surround and enable tumors."

###

Other study co-authors are Gonzalo Almanza, Jeffrey J. Rodvold, Brian Tsui and Kristen Jepsen, all at UC San Diego.

Media Contact

Heather Buschman, PhD
hbuschman@ucsd.edu
858-249-0456

 @UCSanDiego

http://www.ucsd.edu 

Heather Buschman, PhD | EurekAlert!

More articles from Health and Medicine:

nachricht New 3D cultured cells mimic the progress of NASH
02.04.2020 | Tokyo University of Agriculture and Technology

nachricht Geneticists are bringing personal medicine closer to recently admixed individuals
02.04.2020 | Estonian Research Council

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The human body as an electrical conductor, a new method of wireless power transfer

Published by Marc Tudela, Laura Becerra-Fajardo, Aracelys García-Moreno, Jesus Minguillon and Antoni Ivorra, in Access, the journal of the Institute of Electrical and Electronics Engineers

The project Electronic AXONs: wireless microstimulators based on electronic rectification of epidermically applied currents (eAXON, 2017-2022), funded by a...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

 
Latest News

Doubts about basic assumption for the universe

08.04.2020 | Physics and Astronomy

Accelerating AI Together – DFKI Welcomes NVIDIA as Newest Shareholder

08.04.2020 | Information Technology

Ear’s inner secrets revealed with new technology

08.04.2020 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>