Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuronal survival and axonal regrowth obtained in vitro

28.07.2009
While repair of the central nervous system has long been considered impossible, French researchers from Inserm, the CNRS and the UPMC have just developed a strategy that could promote neuronal regeneration after injury. The in vitro studies have just been published in the journal PLoS ONE.

Repair of the central nervous system and restoration of voluntary motor activity through axonal re-growth has long been considered impossible in mammals. Over the last decade, numerous attempts proved disappointing overall. The Inserm team led by Alain Privat has recently shown that an essential component interfering with regeneration was due to the activity of astrocytes, feeder cells that surround neurons.

Normally, the primary role of astrocytes is to supply the nutrients necessary for neuronal function. In the event of spinal injury or lesion, astrocytes synthesize two particular proteins (glial fibrillary acidic protein (GFAP) and vimentin), which isolate the damaged neuron to prevent interference with the operation of the central nervous system.

While the protection is initially useful, in the long run it induces formation of impermeable cicatricial tissue around the neuron, thus constituting impenetrable scarring hostile to axonal regeneration and hence to propagation of nervous impulses. In the event of severe injury, the scarring engenders motor paralysis.

On the basis of the initial findings, the researchers pursued a strategy aimed at developing a therapeutic instrument to block formation of cicatricial tissue. In order to do so, they used gene therapy based on use of interfering RNA. The short RNA sequences, which were made to measure, were inserted into the cytoplasm of cultured astrocytes using a viral therapeutic vector. Once in the cell, the RNA activates mechanisms which block the synthesis of the two proteins secreted by astrocytes and responsible for cicatrix formation. Using that technique, the researchers succeeded in controlling the reaction of astrocytes and when the latter were cultured with neurons, they promoted neuronal survival and triggered axonal growth.

The promising results are now to be validated by in vivo studies. The next stage of the work, currently ongoing, applies the same method to the mouse. The approach may be used in the future in patients having undergone spinal injury.

Find out more:

Source

A novel and efficient gene transfer strategy reduces glial scarring and improves neuronal survival and axonal growth in vitro

Desclaux Mathieu1, Teigell Marisa 2, Amar Lahouari1, Vogel Roland1, Gimenez y Ribotta Minerva3, Privat Alain4 and Mallet Jacques1

1 : Biotechnology and Biotherapy Group, Centre de Recherche de l'Institut du Cerveau et de la Moelle Epiniere, Centre National de la Recherche Scientifique (CNRS) UMR 7225, Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 975, Université Pierre et Marie Curie (UPMC) - Hôpital de la Pitié Salpêtrière, Paris F-75013, France.

2 : NEUREVA-inc., Montpellier F-34091 cedex 5, France.

3 : Consejo Superior de Investigationes Cientifícas (CSIC), Universidad Miguel Hernández (UMH), Instituto de Neurociencias de Alicante, Campus de San Juan., Sant Joan D'Alacant Nacional 332, E-03550, España

4 : Institut National de la Santé et de la Recherche Médicale (INSERM) U583, Physiopathologie et Thérapie des Déficits Sensoriels et Moteurs, Institut des Neurosciences de Montpellier (INM), Université Montpellier 2, Montpellier F-34091 cedex 5, France.

Researcher contacts
Alain Privat
Directeur de recherche Inserm
Unité 583 « physiopathologie et thérapie des déficits sensoriels et moteurs »
Email : privat@univ-montp2.fr
Tel : 04 99 63 60 06
Jacques Mallet
Directeur de recherche CNRS
Centre de recherche de l'institut du cerveau et de la moelle épinière
Email : jacques.mallet@upmc.fr
Tel : 01 42 17 75 30
Press contact
Inserm - Priscille Rivière
Email : presse@inserm.fr
Tel : 01 44 23 60 97

Alain Privat | EurekAlert!
Further information:
http://www.inserm.fr

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

Tiny Helpers that Clean Cells

14.08.2018 | Life Sciences

Algorithm provides early warning system for tracking groundwater contamination

14.08.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>