Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology may increase longevity of dental fillings

06.07.2009
Tooth-colored fillings may be more attractive than silver ones, but the bonds between the white filling and the tooth quickly age and degrade. A Medical College of Georgia researcher hopes a new nanotechnology technique will extend the fillings' longevity.

"Dentin adhesives bond well initially, but then the hybrid layer between the adhesive and the dentin begins to break down in as little as one year," says Dr. Franklin Tay, associate professor of endodontics in the MCG School of Dentistry. "When that happens, the restoration will eventually fail and come off the tooth."

Half of all tooth-colored restorations, which are made of composite resin, fail within 10 years, and about 60 percent of all operative dentistry involves replacing them, according to research in the Journal of the American Dental Association.

"Our adhesives are not as good as we thought they were, and that causes problems for the bonds," Dr. Tay says.

To make a bond, a dentist etches away some of the dentin's minerals with phosphoric acid to expose a network of collagen, known as the hybrid layer. Acid-etching is like priming a wall before it's painted; it prepares the tooth for application of an adhesive to the hybrid layer so that the resin can latch on to the collagen network. Unfortunately, the imperfect adhesives leave spaces inside the collagen that are not properly infiltrated with resin, leading to the bonds' failure.

Dr. Tay is trying to prevent the aging and degradation of resin-dentin bonding by feeding minerals back into the collagen network. With a two year, $252,497 grant from the National Institute of Dental & Craniofacial Research, he will investigate guided tissue remineralization, a new nanotechnology process of growing extremely small, mineral-rich crystals and guiding them into the demineralized gaps between collagen fibers.

His idea came from examining how crystals form in nature. "Eggshells and abalone [sea snail] shells are very strong and intriguing," Dr. Tay says. "We're trying to mimic nature, and we're learning a lot from observing how small animals make their shells."

The crystals, called hydroxyapatite, bond when proteins and minerals interact. Dr. Tay will use calcium phosphate, a mineral that's the primary component of dentin, enamel and bone, and two protein analogs also found in dentin so he can mimic nature while controlling the size of each crystal.

Crystal size is the real challenge, Dr. Tay says. Most crystals are grown from one small crystal into a larger, homogeneous one that is far too big to penetrate the spaces within the collagen network. Instead, Dr. Tay will fit the crystal into the space it needs to fill. "When crystals are formed, they don't have a definite shape, so they are easily guided into the nooks and crannies of the collagen matrix," he says.

In theory, the crystals should lock the minerals into the hybrid layer and prevent it from degrading. If Dr. Tay's concept of guided tissue remineralization works, he will create a delivery system to apply the crystals to the hybrid layer after the acid-etching process.

"Instead of dentists replacing the teeth with failed bonds, we're hoping that using these crystals during the bond-making process will provide the strength to save the bonds," Dr. Tay says. "Our end goal is that this material will repair a cavity on its own so that dentists don't have to fill the tooth."

Paula Hinely | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>