Muscle ‘Synergies’ May be Key to New Stroke Treatment

Why it matters: Previous work in animals and humans has shown that groups of muscles tend to be co-activated as a unit, in predicable patterns, or synergies, across a wide range of movements.

These synergies are thought to represent the fundamental building blocks from which the brain constructs complex movements. The new findings support this concept and also suggest new approaches to the rehabilitation of stroke patients. Stroke is a leading cause of long-term disability in the US, with about 700,000 new or recurrent cases each year.

How they did it: The researchers, led by Emilio Bizzi, an MIT Institute Professor and a member of the McGovern Institute for Brain Research and the Department of Brain and Cognitive Sciences, used electromyographic (EMG) recording to measure activity in arm and shoulder muscles of 8 stroke patients as they performed a variety of reaching movements. The patients had stroke damage in one cortical hemisphere only, so one arm was impaired while the other was largely unaffected. The researchers used computational methods to identify groups of muscles whose activation was correlated across movements. In 7 out of 8 patients, these correlations, or synergies, were largely identical between the affected and unaffected arms, even though the actual movements were very different between the two arms. The results support the view that the synergies are encoded in the brainstem or spinal cord, areas that were unaffected in these patients. “We show that descending neural signals from the motor cortex select, activate and combine a small number of muscle synergies that are specified by networks in the spinal cord or brainstem,” Bizzi explains, “and different movements emerge as these synergies are recruited to various degrees.”

Next steps: The findings suggest a new approach to the rehabilitation of stroke patients. By identifying synergies whose activations are affected following a stroke, it may be possible to develop focused rehabilitation methods that specifically train the impaired synergies. As a first step toward this goal, the researchers plan to monitor a group of stroke patients as they undergo rehabilitation therapy, to determine whether the post-stroke improvements in motor function can be explained as changes in the activation pattern of specific synergies.

Source: Cheung VC, Piron L, Agostini M, Silvoni S, Turolla A, Bizzi E. (2009). Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proc Natl Acad Sci (USA). Oct 19 2009.

Funding: McGovern Institute for Brain Research at MIT and the Italian Ministry of Health

Media Contact

Jen Hirsch Newswise Science News

More Information:

http://www.mit.edu

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors