Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Munich researchers discover key allergy gene

22.08.2008
Together with colleagues from the Department of Dermatology and Allergy and the Center for Allergy and Environment (ZAUM) of the Technische Universität München, scientists at the Helmholtz Zentrum München have pinpointed a major gene for allergic diseases.

The gene was localized using cutting edge technologies for examining the whole human genome at the Helmholtz Zentrum München.

The newly discovered FCER1A gene encodes the alpha chain of high affinity IgE receptor, which plays a major role in controlling allergic responses. The team of scientists led by Dr. Stephan Weidinger from the Technische Universität München and Dr. Thomas Illig from the Helmholtz Zentrum München found that certain variations of the FCER1A gene decisively influence the production of immunoglobulin E (IgE) antibodies.

IgE antibodies are a particular type of antibody that is normally used to protect against parasites. In Western lifestyle countries with less contact, however, elevated IgE levels are associated with allergic disorders.

In genetically susceptible individuals the immune system becomes biased and produces IgE antibodies against harmless agents such as pollen, dust mites or animal hair. These IgE antibodies then work in conjunction with certain cells to get rid of the allergens, a process that gives rise to the symptoms of allergy such as allergic rhinitis (hay fever), atopic dermatitis or asthma.

“Most people with allergies are atopic - meaning they have a genetic tendency to develop allergies. To detect the genetic factors we examined the genomes of more than 10,000 adults and children from the whole of Germany" explained Stephan Weidinger.

Most of the persons examined for the study come from the population studies of the KORA (co-operative health research in the Augsburg region) research platform, which is led by Prof. Dr. H.-Erich Wichmann, the Director of the Institute of Epidemiology at the Helmholtz Zentrum München. The allergological examinations were carried by the Department for Dermatology and Allergy of the Technische Universität München headed by Prof. Dr. Dr. Johannes Ring.

Although in its early stages, the new knowledge on the regulation of IgE production does have the potential to guide the development of new drugs.

Michael van den Heuvel | alfa
Further information:
http://www.helmholtz-muenchen.de
http://www.helmholtz-muenchen.de/en/press/press/press-releases-2008/press-releases-2008-detail/article/10903/9/index.html

More articles from Health and Medicine:

nachricht Researchers image atomic structure of important immune regulator
11.12.2018 | Brigham and Women's Hospital

nachricht Potential seen for tailoring treatment for acute myeloid leukemia
10.12.2018 | University of Washington Health Sciences/UW Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>