Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiple sclerosis: damaged myelin not the trigger

27.02.2012
Damaged myelin in the brain and spinal cord does not cause the autoimmune disease Multiple sclerosis (MS), neuroimmunologists from the University of Zurich have now demonstrated in collaboration with researchers from Berlin, Leipzig, Mainz and Munich.

In the current issue of Nature Neuroscience, they therefore rule out a popular hypothesis on the origins of MS. The scientists are now primarily looking for the cause of the development of MS in the immune system instead of the central nervous system.

Millions of adults suffer from the incurable disease multiple sclerosis (MS). It is relatively certain that MS is an autoimmune disease in which the body’s own defense cells attack the myelin in the brain and spinal cord. Myelin enwraps the nerve cells and is important for their function of transmitting stimuli as electrical signals. There are numerous unconfirmed hypotheses on the development of MS, one of which has now been refuted by the neuroimmunologists in their current research: The death of oligodendrocytes, as the cells that produce the myelin sheath are called, does not trigger MS.

Neurodegenerative hypothesis obsolete

With their research, the scientists disprove the so-called “neurodegenerative hypothesis”, which was based on observations that certain patients exhibited characteristic myelin damage without a discernable immune attack. In the popular hypothesis, the scientists assume that MS-triggering myelin damage occurs without the involvement of the immune system. In this scenario, the immune response against myelin would be the result – and not the cause – of this pathogenic process.

The aim of the research project was to confirm or disprove this hypothesis based on a new mouse model. Using genetic tricks, they induced myelin defects without alerting the immune defense. “At the beginning of our study, we found myelin damage that strongly resembled the previous observations in MS patients,” explains Burkhard Becher, a professor at the University of Zurich. “However, not once were we able to observe an MS-like autoimmune disease.” In order to ascertain whether an active immune defense causes the disease based on a combination of an infection and myelin damage, the researchers conducted a variety of further experiments – without success. “We were unable to detect an MS-like disease – no matter how intensely we stimulated the immune system,” says Ari Waisman, a professor from the University Medical Center Mainz. “We therefore consider the neurodegenerative hypothesis obsolete.”

Focus on immune system

The teams involved in the study want to continue researching the cause and origins of MS. “In light of these and other new findings, research on the pathogenesis of MS is bound to concentrate less on the brain and more on the immune system in future,” says Professor Thorsten Buch from the Technischen Universität München.

Further reading:
Giuseppe Locatelli, Simone Wörtge, Thorsten Buch, Barbara Ingold, Friederike Frommer, Bettina Sobottka, Martin Krueger, Khalad Karram, Claudia Bühlmann, Ingo Bechmann, Frank L. Heppner, Ari Waisman and Burkhard Becher. Primary oligodendrocyte death does not elicit anti-CNS immunity. Nature Neuroscience. February 26, 2012. Doi: 10.1038/nn.3062
Contact:
Professor Burkhard Becher
Institute of Experimental Immunology
University of Zurich
Tel.: +41 44 635 37 01
Email: burkhard.becher@neuroimm.uzh.ch

Nathalie Huber | idw
Further information:
http://www.uzh.ch

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>