Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MSU researcher links cholesterol crystals to cardiovascular attacks

31.03.2009
For the first time ever, a Michigan State University researcher has shown cholesterol crystals can disrupt plaque in a patient’s cardiovascular system, causing a heart attack or stroke.

The findings by a team led by George Abela, chief of the cardiology division in MSU’s College of Human Medicine, could dramatically shift the way doctors and researchers approach cardiovascular attacks. Abela’s findings appear in the April issue of the American Journal of Cardiology.

“Any time there is something completely new or unique in medical research, it is met with healthy skepticism,” said Abela, who has been working with cholesterol crystals since 2001. “But we have found something that can help dramatically change how we treat heart disease.”

What Abela and his team found is that as cholesterol builds up along the wall of an artery, it crystallizes from a liquid to a solid state and then expands.

“As the cholesterol crystallizes, two things can happen,” Abela said. “If it’s a big pool of cholesterol, it will expand, causing the ‘cap’ of the deposit to tear off in the arterial wall. Or the crystals, which are sharp, needle-like structures, poke their way through the cap covering the cholesterol deposit, like nails through wood.”

The crystals then work their way into the bloodstream. It is the presence of this material, as well as damage to an artery, that disrupts plaque and puts the body’s natural defense mechanism – clotting – into action, which can lead to dangerous, if not fatal, clots.

Abela and his team studied coronary arteries and carotid plaques from patients who died of cardiovascular attacks. When comparing their findings against a control group, they found evidence of cholesterol crystals disrupting plaque.

The breakthrough in discovering the crystals’ impact came after Abela and colleagues found a new way to preserve tissue after an autopsy, using a vacuum dry method instead of an alcohol solution. The previous method would dissolve the crystals and prevent researchers and doctors from seeing the impact.

Abela also has found that cholesterol crystals released in the bloodstream during a cardiac attack or stroke can damage artery linings much further away from the site of the attack, leaving survivors at even greater risk. The research means health care providers now have another weapon in their arsenal against cardiovascular diseases.

“So far, treatments have not been focused on this process,” Abela said. “Now we have a target to attack with the various novel approaches. In the past, we’ve treated the various stages that lead to this final stage, rather than preventing or treating this final stage of the condition.”

In separate research published in the March edition of medical journal Atherosclerosis, Abela and colleagues looked at the physical triggers that can cause cholesterol crystallization. They found that physical conditions such as temperature can play a role in how quickly cholesterol crystallizes and potentially causes a rupture.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

Jason Cody | EurekAlert!
Further information:
http://www.msu.edu

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>