Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MR spectroscopy shows precancerous breast changes in women with BRCA gene

03.03.2015

A magnetic resonance spectroscopy (MRS) technique that monitors biochemical changes in tissue could improve the management of women at risk of breast cancer, according to a new study published online in the journal Radiology.

Many women face a higher risk of breast cancer due to the presence of BRCA gene mutations. A BRCA1 or BRCA2 mutation carrier has approximately a 50 percent risk of developing breast cancer before the age of 50, and the cancer can develop within months of a negative screening by mammography. The risk is so significant that many women with BRCA mutations undergo prophylactic, or preventive mastectomies to avoid getting invasive cancer later in life.


This unenhanced image shows region of interest placement in a 30-year-old control subject. This is the spectroscopic voxel location from which 2-D localized COSY data were collected.

Credit: Radiological Society of North America

For the new study, researchers assessed 2-D localized correlated spectroscopy (L-COSY) as a noninvasive means to identify biochemical changes associated with a very early stage of cancer development known as the pre-invasive state.

The researchers performed L-COSY on nine women carrying the BRCA1 and 14 women with BRCA2 gene mutations and compared the results with those from 10 healthy controls who had no family history of breast cancer. All the patients underwent contrast enhanced 3-T MRI and ultrasound.

While no abnormality was recorded by MRI or ultrasound, L-COSY MRS identified statistically significant biochemical changes in women with BRCA1 and BRCA2 gene mutations compared to controls. The researchers found multiple distinct cellular changes measurable through L-COSY indicative of premalignant changes in women carrying BRCA gene mutations.

"These changes appear to represent a series of early warning signs that may allow women to make informed decisions as to when and if they have prophylactic mastectomy," said Carolyn Mountford, M.Sc., D.Phil., from the University of Newcastle in Callaghan, Australia, Brigham and Women's Hospital in Boston and the Translational Research Institute in Brisbane.

Study co-author David Clark, M.B.B.S., B.Sc., F.R.A.C.S., from the Breast and Endocrine Centre in Gateshead, New South Wales, Australia, believes the protocol may help guide treatment decisions in women with BRCA mutations. Dr. Clark noted that approximately half the women who have BRCA mutations may not develop breast cancer at all and certainly not before they turn 50 years old, so the spectroscopy technique could be extremely useful.

"We think there are three stages of pre-cancer progression in the breast tissue," he said. "Women at Stage 1 could monitor their breasts with follow-up spectroscopy every six months."

The research team also found evidence that lipid pathways are affected differently in the two different gene mutations, which may help explain why BRCA2 mutation carriers survive longer than BRCA1 carriers.

The study represents the culmination of more than 25 years of work, according to Dr. Mountford. Research on biopsy samples in the 1980s proved the existence of pre-invasive states, but technological improvements were needed before the technique could be applied to clinical MRI scanners.

"It took a multidisciplinary team, including an MR physicist, chemists, radiographers and radiologists to be sure that what we were seeing was not apparent from conventional contrast-enhanced imaging," Dr. Mountford said.

The researchers hope to confirm the findings in larger populations and continue to monitor the women in the study group with the 2-D L-COSY protocol to learn more about the biochemical changes and what they represent.

###

"Lipid and Metabolite Deregulation in the Breast Tissue of Women Carrying BRCA1 and BRCA2 Genetic Mutations." Collaborating with Drs. Mountford and Clark were Saadallah Ramadan, Ph.D., Jameen Arm, B.Sc., Judith Silcock, R.N., Gorane Santamaria, M.D., Ph.D., Jessica Buck, B.Sc., Michele Roy, M.D., F.R.C.R., Kin Men Leong, M.B.B.S., F.R.A.C.R., Peter Lau, M.B.B.S., F.R.A.C.R., Peter Malycha, M.B.B.S., F.R.A.C.S., F.R.C.S.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc.

RSNA is an association of more than 54,000 radiologists, radiation oncologists, medical physicists and related scientists promoting excellence in patient care and health care delivery through education, research and technologic innovation. The Society is based in Oak Brook, Ill. (RSNA.org)

For patient-friendly information on breast imaging, visit RadiologyInfo.org.

Media Contact

Linda Brooks
lbrooks@rsna.org
630-590-7762

 @rsna

http://www.rsna.org

Linda Brooks | EurekAlert!

More articles from Health and Medicine:

nachricht UC San Diego researchers develop sensors to detect and measure cancer's ability to spread
06.12.2018 | University of California - San Diego

nachricht New cancer immunotherapy approach turns immune cells into tiny anti-tumor drug factories
05.12.2018 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>