Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moon radiation findings may reduce health risks to astronauts

12.06.2013
Space scientists from the University of New Hampshire (UNH) and the Southwest Research Institute (SwRI) report that data gathered by NASA's Lunar Reconnaissance Orbiter (LRO) show lighter materials like plastics provide effective shielding against the radiation hazards faced by astronauts during extended space travel. The finding could help reduce health risks to humans on future missions into deep space.

Aluminum has always been the primary material in spacecraft construction, but it provides relatively little protection against high-energy cosmic rays and can add so much mass to spacecraft that they become cost-prohibitive to launch.

The scientists have published their findings online in the American Geophysical Union journal Space Weather. Titled "Measurements of Galactic Cosmic Ray Shielding with the CRaTER Instrument," the work is based on observations made by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on board the LRO spacecraft. Lead author of the paper is Cary Zeitlin of the SwRI Earth, Oceans, and Space Department at UNH. Co-author Nathan Schwadron of the UNH Institute for the Study of Earth, Oceans, and Space is the principal investigator for CRaTER.

Says Zeitlin, "This is the first study using observations from space to confirm what has been thought for some time—that plastics and other lightweight materials are pound-for-pound more effective for shielding against cosmic radiation than aluminum. Shielding can't entirely solve the radiation exposure problem in deep space, but there are clear differences in effectiveness of different materials."

The plastic-aluminum comparison was made in earlier ground-based tests using beams of heavy particles to simulate cosmic rays. "The shielding effectiveness of the plastic in space is very much in line with what we discovered from the beam experiments, so we've gained a lot of confidence in the conclusions we drew from that work," says Zeitlin. "Anything with high hydrogen content, including water, would work well."

The space-based results were a product of CRaTER's ability to accurately gauge the radiation dose of cosmic rays after passing through a material known as "tissue-equivalent plastic," which simulates human muscle tissue. Prior to CRaTER and recent measurements by the Radiation Assessment Detector (RAD) on the Mars rover Curiosity, the effects of thick shielding on cosmic rays had only been simulated in computer models and in particle accelerators, with little observational data from deep space.

The CRaTER observations have validated the models and the ground-based measurements, meaning that lightweight shielding materials could safely be used for long missions, provided their structural properties can be made adequate to withstand the rigors of spaceflight.

Since LRO's launch in 2009, the CRaTER instrument has been measuring energetic charged particles—particles that can travel at nearly the speed of light and may cause detrimental health effects—from galactic cosmic rays and solar particle events. Fortunately, Earth's thick atmosphere and strong magnetic field provide adequate shielding against these dangerous high-energy particles.

The NASA Goddard Space Flight Center in Greenbelt, Md. developed and manages the LRO mission. LRO's current science mission is implemented for NASA's Science Mission Directorate. NASA's Exploration Systems Mission Directorate sponsored LRO's initial one-year exploration mission that concluded in September 2010.

To view the Space Weather article, visit http://onlinelibrary.wiley.com/doi/10.1002/swe.20043/abstract

For more on the CRaTER instrument, visit http://crater.sr.unh.edu/ and for the LRO mission visit http://lunar.gsfc.nasa.gov/mission.html.

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,300 graduate students.

Image to download:

http://www.eos.unh.edu/newsimage/lro3_lg.jpg

Caption: Artist's conception of NASA's Lunar Reconnaissance Orbiter above the Moon. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument is visible in the center of the image at the bottom left corner of the spacecraft. Image courtesy of NASA.

David Sims | EurekAlert!
Further information:
http://www.unh.edu

More articles from Health and Medicine:

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

nachricht Pain: Perception and motor impulses arise in the brain independently of one another
12.12.2018 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>