Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New molecule protects the brain from detrimental effects associated with diabetes and high blood sugar

28.01.2014
Potential to lower diabetic patients’ higher risk of developing dementia or Alzheimer’s disease

Researchers at the Hebrew university of Jerusalem have created a molecule that could potentially lower diabetic patients’ higher risk of developing dementia or Alzheimer’s disease.

Recent studies indicate that high levels of sugar in the blood in diabetics and non-diabetics are a risk factor for the development of dementia, impaired cognition, and a decline of brain function. Diabetics have also been found to have twice the risk of developing Alzheimer's disease compared to non-diabetics.

Now, researchers from the Hebrew University of Jerusalem have found a potential neuro-inflammatory pathway that could be responsible for the increases of diabetics’ risk of Alzheimer's and dementia. They also reveal a potential treatment to reverse this process.

The research group led by Prof. Daphne Atlas, of the Department of Biological Chemistry in the Alexander Silberman Institute of Life Sciences at the Hebrew University, experimented with diabetic rats to examine the mechanism of action that may be responsible for changes in the brain due to high sugar levels. The researchers found that diabetic rats displayed high activity of enzymes called MAPK kinases, which are involved in facilitating cellular responses to a variety of stimuli, leading to inflammatory activity in brain cells and the early death of cells.

The study shows that the diabetic rats given a daily injection of the sugar-lowering drug rosiglitazone for a month enjoyed a significant decrease in MAPK enzyme activity accompanied by a decrease in the inflammatory processes in the brain. According to the authors, this finding represents the first unequivocal evidence of a functional link between high blood sugar and the activation of this specific inflammatory pathway in the brain.

Using the diabetic rat model, they explored a novel approach that would lower the activation of these enzymes in the brain, and decrease neuronal cell death. In the last few years, Prof. Atlas developed a series of molecules that mimic the action of thioredoxin called thioredoxin-mimetic peptides (TXM), whose role is to protect the cells from early death through activating inflammatory pathways. The TXM peptides were effective in different animal models and were able to prevent the activation of the damaging MAPK kinases. Applied to the diabetic Zucker rats, one of the molecules, TXM-CB3, significantly reduced the activity of these enzymes, and lowered the accelerated brain cell death. These results indicate that the molecule managed to cross the blood-brain barrier and improve the condition of the brain cells, through lowering the inflammatory processes in the rats’ brains, despite the high glucose levels afflicting the rats.

The Hebrew University’s Prof. Atlas said: "This study paves the way for preventive treatment of damages caused by high sugar levels, and for reducing the risk of dementia and Alzheimer's disease in diabetics or people with elevated blood sugar levels. Following the successful animal testing of the molecule we developed, we hope to explore its potential benefit for treating cognitive and memory impairments caused by diabetes on humans.”

The molecule is protected by a patent registered by Yissum Research Development Company, the technology transfer arm of the Hebrew University.

The study, “Thioredoxin-Mimetic peptide CB3 Lowers MAPKinsase activity in the Zucker Rat Brain,” appeared in the journal Redox Biology, an official Journal of the Society for Free Radical Biology and Medicine and the Society for Free Radical Research-Europe.

The research was funded in part by funded by the H.L. Lauterbach Fund, the Haya and Shlomo Margalit Fund, and a NOFAR program (issued by MAGNET directorate in the Israeli Ministry of Industry, Trade & Labor). Researchers included Dr. Michael Trus; PhD student Moshe Cohen-Kutner; MSc student Lena Khomsky; and Hila Ben-Yehuda.

For information:

Dov Smith
Hebrew University Foreign Press Liaison
02-5882844 / +972-54-8820860
dovs@savion.huji.ac.il

Dov Smith | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>