Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moffitt Cancer Center Researchers Identify Drivers of Sarcoma Growth and Survival

02.05.2012
Expression of tyrosine kinases may limit effectiveness of agents against sarcomas
To better understand the signaling pathways active in sarcomas, researchers at Moffitt Cancer Center used state-of-the-art mass spectrometry-based proteomics to characterize a family of protein enzymes that act as "on" or "off" switches important in the biology of cancer. The tyrosine kinases they identified, the researchers said, could act as "drivers" for the growth and survival of sarcomas.

Sarcomas are relatively rare forms of cancer. In contrast to carcinomas, which arise from epithelial cells (in breast, colon and lung cancers, for example), sarcomas are tumors derived from bone, fat, muscle or vascular tissues.

"Sarcomas are rare, diverse malignancies that arise from connective tissues," said study lead author Eric B. Haura, M.D., program leader for Experimental Therapeutics. "We hypothesized that we could identify important proteins that drive the growth and survival of these poorly understood sarcomas using an approach to characterize signaling proteins using mass spectrometry."

According to Haura, whose lab focuses on signaling pathways in cancer and understanding the role of kinases, protein phosphorylation plays a significant role in a wide range of cellular processes and is commonly disrupted in diseases such as cancer. The study approach is novel by engaging proteomics, an emerging and increasingly powerful approach to study proteins in disease in a more global and unbiased manner.

In this study, the Moffitt researchers identified 1,936 unique tyrosine phosphorylated peptides corresponding to 844 unique phospho-tyrosine proteins and found 39 tyrosine kinases in sarcoma cells. Of the 99 tyrosine kinases present in the human genome, the research team identified peptides corresponding to nearly 40 percent of the tyrosine kinome.

"Tyrosine kinases play an important role in controlling the hallmarks of cancer, and they have a proven track record as druggable targets for cancer treatment. Our goal was to produce a ‘landscape' of tyrosine phosphorylated proteins and tyrosine kinases prioritized for subsequent functional validation," Haura said. "In our study, we identified numerous tyrosine kinases that can be important for cellular signaling in human sarcomas that could drive the natural progression of sarcoma and, therefore, could be targeted by small molecule inhibitors aimed at altering sarcoma progression."

Questions remain, however, about which, if any, of the 40 tyrosine kinases the researchers identified in sarcoma tumor cell lines act to regulate sarcoma tumor cell growth and tumor survival.

"The answers to this question can help prioritize which potential targets to examine further, including advancement into trials of patients with advanced sarcoma," explained Haura. "As a first step, we screened sarcoma cell lines against a number of inhibitors selected, all based on the tyrosine kinases we identified, and identified some active drugs."

While the researchers found kinases in sarcoma cells that deserved further study, they also concluded that the sarcoma cells tested expressed multiple tyrosine kinases. That great number may limit the effectiveness of targeted agents.

"We think this approach could hold promise in profiling tumors directly from patients and can complement existing genetic data on sarcomas. Our results show this is feasible in tumor tissues, and we hope to advance this further by directly studying additional tumors from sarcoma patients."

Their study appeared in a recent issue of Cancer Research published by the American Association for Cancer Research.

About Moffitt Cancer Center
Follow Moffitt on Facebook: www.facebook.com/MoffittCancerCenter
Follow Moffitt on Twitter: @MoffittNews
Follow Moffitt on YouTube: MoffittNews

Located in Tampa, Moffitt Cancer Center is a National Cancer Institute-designated Comprehensive Cancer Center, which recognizes Moffitt's excellence in research and contributions to clinical trials, prevention and cancer control. Moffitt is also a member of the National Comprehensive Cancer Network, a prestigious alliance of the country's leading cancer centers, and is listed in U.S. News & World Report as one of "America's Best Hospitals" for cancer.

Patty Kim | EurekAlert!
Further information:
http://www.moffitt.org

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>