Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moffitt Cancer Center Researchers Identify Drivers of Sarcoma Growth and Survival

02.05.2012
Expression of tyrosine kinases may limit effectiveness of agents against sarcomas
To better understand the signaling pathways active in sarcomas, researchers at Moffitt Cancer Center used state-of-the-art mass spectrometry-based proteomics to characterize a family of protein enzymes that act as "on" or "off" switches important in the biology of cancer. The tyrosine kinases they identified, the researchers said, could act as "drivers" for the growth and survival of sarcomas.

Sarcomas are relatively rare forms of cancer. In contrast to carcinomas, which arise from epithelial cells (in breast, colon and lung cancers, for example), sarcomas are tumors derived from bone, fat, muscle or vascular tissues.

"Sarcomas are rare, diverse malignancies that arise from connective tissues," said study lead author Eric B. Haura, M.D., program leader for Experimental Therapeutics. "We hypothesized that we could identify important proteins that drive the growth and survival of these poorly understood sarcomas using an approach to characterize signaling proteins using mass spectrometry."

According to Haura, whose lab focuses on signaling pathways in cancer and understanding the role of kinases, protein phosphorylation plays a significant role in a wide range of cellular processes and is commonly disrupted in diseases such as cancer. The study approach is novel by engaging proteomics, an emerging and increasingly powerful approach to study proteins in disease in a more global and unbiased manner.

In this study, the Moffitt researchers identified 1,936 unique tyrosine phosphorylated peptides corresponding to 844 unique phospho-tyrosine proteins and found 39 tyrosine kinases in sarcoma cells. Of the 99 tyrosine kinases present in the human genome, the research team identified peptides corresponding to nearly 40 percent of the tyrosine kinome.

"Tyrosine kinases play an important role in controlling the hallmarks of cancer, and they have a proven track record as druggable targets for cancer treatment. Our goal was to produce a ‘landscape' of tyrosine phosphorylated proteins and tyrosine kinases prioritized for subsequent functional validation," Haura said. "In our study, we identified numerous tyrosine kinases that can be important for cellular signaling in human sarcomas that could drive the natural progression of sarcoma and, therefore, could be targeted by small molecule inhibitors aimed at altering sarcoma progression."

Questions remain, however, about which, if any, of the 40 tyrosine kinases the researchers identified in sarcoma tumor cell lines act to regulate sarcoma tumor cell growth and tumor survival.

"The answers to this question can help prioritize which potential targets to examine further, including advancement into trials of patients with advanced sarcoma," explained Haura. "As a first step, we screened sarcoma cell lines against a number of inhibitors selected, all based on the tyrosine kinases we identified, and identified some active drugs."

While the researchers found kinases in sarcoma cells that deserved further study, they also concluded that the sarcoma cells tested expressed multiple tyrosine kinases. That great number may limit the effectiveness of targeted agents.

"We think this approach could hold promise in profiling tumors directly from patients and can complement existing genetic data on sarcomas. Our results show this is feasible in tumor tissues, and we hope to advance this further by directly studying additional tumors from sarcoma patients."

Their study appeared in a recent issue of Cancer Research published by the American Association for Cancer Research.

About Moffitt Cancer Center
Follow Moffitt on Facebook: www.facebook.com/MoffittCancerCenter
Follow Moffitt on Twitter: @MoffittNews
Follow Moffitt on YouTube: MoffittNews

Located in Tampa, Moffitt Cancer Center is a National Cancer Institute-designated Comprehensive Cancer Center, which recognizes Moffitt's excellence in research and contributions to clinical trials, prevention and cancer control. Moffitt is also a member of the National Comprehensive Cancer Network, a prestigious alliance of the country's leading cancer centers, and is listed in U.S. News & World Report as one of "America's Best Hospitals" for cancer.

Patty Kim | EurekAlert!
Further information:
http://www.moffitt.org

More articles from Health and Medicine:

nachricht A new approach to targeting cancer cells
20.05.2019 | University of California - Riverside

nachricht Radioisotope couple for tumor diagnosis and therapy
14.05.2019 | Kanazawa University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Synthesis of helical ladder polymers

21.05.2019 | Materials Sciences

Ultra-thin superlattices from gold nanoparticles for nanophotonics

21.05.2019 | Materials Sciences

Chaperones keep the tumor suppressor protein p53 in check: How molecular escorts help prevent cancer

21.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>