Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT robotic therapy holds promise for cerebral palsy

25.05.2009
Devices can help children learn to grasp and manipulate objects

Over the past few years, MIT engineers have successfully tested robotic devices to help stroke patients learn to control their arms and legs. Now, they're building on that work to help children with cerebral palsy.

"Robotic therapy can potentially help reduce impairment and facilitate neuro-development of youngsters with cerebral palsy," says Hermano Igo Krebs, principal research scientist in mechanical engineering and one of the project's leaders.

Krebs and others at MIT, including professor of mechanical engineering Neville Hogan, pioneered the use of robotic therapy in the late 1980s, and since then the field has taken off.

"We started with stroke because it's the biggest elephant in the room, and then started to build it out to other areas, including cerebral palsy as well as multiple sclerosis, Parkinson's disease and spinal cord injury," says Krebs.

The team's suite of robots for shoulder-and-elbow, wrist, hand and ankle has been in clinical trials for more than 15 years with more than 400 stroke patients. The Department of Veterans Affairs has just completed a large-scale, randomized, multi-site clinical study with these devices.

All the devices are based on the same principle: that it is possible to help rebuild brain connections using robotic devices that gently guide the limb as a patient tries to make a specific movement.

When the researchers first decided to apply their work to children with cerebral palsy, Krebs was optimistic that it would succeed, because children's developing brains are more plastic than adults', meaning they are more able to establish new connections.

The MIT team is focusing on improving cerebral palsy patients' ability to reach for and grasp objects. Patients handshake with the robot via a handle, which is connected to a computer monitor that displays tasks similar to those of simple video games.

In a typical task, the youngster attempts to move the robot handle toward a moving or stationary target shown on the computer monitor. If the child starts moving in the wrong direction or does not move, the robotic arm gently nudges the child's arm in the right direction.

Krebs began working in robotic therapy as a graduate student at MIT almost 20 years ago. In his early studies, he and his colleagues found that it's important for stroke patients to make a conscious effort during physical therapy. When signals from the brain are paired with assisted movement from the robot, it helps the brain form new connections that help it relearn to move the limb on its own.

Even though a stroke kills many neurons, "the remaining neurons can very quickly establish new synapses or reinforce dormant synapses," says Krebs.

For this type of therapy to be effective, many repetitions are required — at least 400 in an hour-long session.

Results from three published pilot studies involving 36 children suggest that cerebral palsy patients can also benefit from robotic therapy. The studies indicate that robot-mediated therapy helped the children reduce impairment and improve the smoothness and speed of their reaching motions.

The researchers applied their work to stroke patients first because it is such a widespread problem — about 800,000 people suffer strokes in the United States every year. About 10,000 babies develop cerebral palsy in the United States each year, but there is more potential for long-term benefit for children with cerebral palsy.

"In the long run, people that have a stroke, if they are 70 or 80 years old, might stay with us for an average of 5 or 6 years after the stroke," says Krebs. "In the case of cerebral palsy, there is a whole life."

Most of the clinical work testing the device with cerebral palsy patients has been done at Blythedale Children's Hospital in Westchester County, N.Y., and Spaulding Rehabilitation Hospital in Boston. Other hospitals around the country and abroad are also testing various MIT-developed robotic therapy devices.

Krebs' team has focused first on robotic devices to help cerebral palsy patients with upper body therapy, but they have also initiated a project to design a pediatric robot for the ankle.

Among Krebs' and Hogan's collaborators on the cerebral palsy work are Dr. Mindy Aisen '76, former head of the Department of Veterans Affairs Office of Research and Development and presently the director and CEO of the Cerebral Palsy International Research Foundation (CPIRF); Dr. Joelle Mast, chief medical officer, and Barbara Ladenheim, director of research, of Blythedale Children's Hospital; and Fletcher McDowell, former CEO of the Burke Rehabilitation Hospital and a member of the CPIRF board of directors.

MIT's work on robotic therapy devices is funded by CPIRF and the Niarchos Foundation, the Department of Veterans Affairs, the New York State NYSCORE, and the National Center for Medical Rehabilitation Research of the Eunice Kennedy Shriver National Institute of Child Health and Human Development.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>