Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Milestone reached in work to build replacement kidneys in the lab

09.09.2014

Regenerative medicine researchers at Wake Forest Baptist Medical Center have addressed a major challenge in the quest to build replacement kidneys in the lab. Working with human-sized pig kidneys, the scientists developed the most successful method to date to keep blood vessels in the new organs open and flowing with blood. The work is reported in journal Technology.

"Until now, lab-built kidneys have been rodent-sized and have functioned for only one or two hours after transplantation because blood clots developed," said Anthony Atala, M.D., director and professor at the Wake Forest Institute for Regenerative Medicine and a senior author on the study.

"In our proof-of-concept study, the vessels in a human-sized pig kidney remained open during a four-hour testing period. We are now conducting a longer-term study to determine how long flow can be maintained."

If proven successful, the new method to more effectively coat the vessels with cells (endothelial) that keep blood flowing smoothly, could potentially be applied to other complex organs that scientists are working to engineer, including the liver and pancreas.

... more about:
»Medicine »blood »endothelial »kidneys »organs »replacement

The current research is part of a long-term project to use pig kidneys to make support structures known as "scaffolds" that could potentially be used to build replacement kidneys for human patients with end-stage renal disease. Scientists first remove all animal cells from the organ – leaving only the organ structure or "skeleton." A patient's own cells would then be placed in the scaffold, making an organ that the patient theoretically would not reject.

The cell removal process leaves behind an intact network of blood vessels that can potentially supply the new organ with oxygen. However, scientists working to repopulate kidney scaffolds with cells have had problems coating the vessels and severe clotting has generally occurred within a few hours after transplantation.

The Wake Forest Baptist scientists took a two-pronged approach to address this problem. First, they evaluated four different methods of introducing new cells into the main vessels of the kidney scaffold. They found that a combination of infusing cells with a syringe, followed by a period of pumping cells through the vessels at increasing flow rates, was most effective.

Next, the research team coated the scaffold's vessels with an antibody designed to make them more "sticky" and to bind endothelial cells. Laboratory and imaging studies -- as well as tests of blood flow in the lab – showed that cell coverage of the vessels was sufficient to support blood flow through the entire kidney scaffold.

The final test of the dual-approach was implanting the scaffolds in pigs weighing 90 to 110 pounds. During a four-hour testing period, the vessels remained open.

"Our cell seeding method, combined with the antibody, improves the attachment of cells to the vessel wall and prevents the cells from being detached when blood flow is initiated," said In Kap Ko, Ph.D., lead author and instructor in regenerative medicine at Wake Forest Baptist.

The scientists said a long-term examination is necessary to sufficiently conclude that blood clotting is prevented when endothelial cells are attached to the vessels.

The scientists said if the new method is proven successful in the long-term, the research brings them an important step closer to the day when replacement kidneys can be built in the lab.

"The results are a promising indicator that it is possible to produce a fully functional vascular system that can deliver nutrients and oxygen to engineered kidneys, as well as other engineered organs," said Ko.

Using pig kidneys as scaffolds for human patients has several advantages, including that the organs are similar in size and that pig heart valves – removed of cells – have safety been used in patients for more than three decades.

###

This study was supported, in part, by Telemedicine and Advanced Technology Research Center at the U.S. Army Medical Research and Materiel Command.

Co-researchers were Mehran Abolbashari, M.D., Jennifer Huling, B.S., Cheil Kim, M.D., Ph.D., Sayed-Hadi Mirmalek-Sani, Ph.D., Mahmoudreza Moradi, M.D., Giuseppe Orlando, M.D., John D. Jackson, Ph.D., Tamer Aboushwareb, M.D., Shay Soker, Ph.D., and Anthony Atala, M.D., all with

Wake Forest Baptist Medical Center is a fully integrated academic medical center located in Winston-Salem, North Carolina. The institution comprises the medical education and research components of Wake Forest School of Medicine, the integrated clinical structure and consumer brand Wake Forest Baptist Health, which includes North Carolina Baptist Hospital and Brenner Children's Hospital, the creation and commercialization of research discoveries into products that benefit patients and improve health and wellness, through Wake Forest Innovations, Wake Forest Innovation Quarter, a leading center of technological discovery, development and commercialization, as well as a network of affiliated community-based hospitals, physician practices, outpatient services and other medical facilities. Wake Forest School of Medicine is ranked among the nation's best medical schools and is a leading national research center in fields such as regenerative medicine, cancer, neuroscience, aging, addiction and public health sciences. Wake Forest Baptist's clinical programs have consistently ranked as among the best in the country by U.S. News & World Report for the past 20 years.

Karen Richardson | Eurek Alert!

Further reports about: Medicine blood endothelial kidneys organs replacement

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>