Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MicroRNA that blocks bone destruction could offer new therapeutic target for osteoporosis

26.06.2014

UT Southwestern cancer researchers have identified a promising molecule that blocks bone destruction and, therefore, could provide a potential therapeutic target for osteoporosis and bone metastases of cancer.

The molecule, miR-34a, belongs to a family of small molecules called microRNAs (miRNAs) that serve as brakes to help regulate how much of a protein is made, which in turn, determines how cells respond.


This image depicts Dr. Yihong Wan

Credit: UT Southwestern

UT Southwestern researchers found that mice with higher than normal levels of miR-34a had increased bone mass and reduced bone breakdown. This outcome is achieved because miR-34a blocks the development of bone-destroying cells called osteoclasts, which make the bone less dense and prone to fracture.

"This new finding may lead to the development of miR-34a mimics as a new and better treatment for osteoporosis and cancers that metastasize to the bone," said senior author Dr. Yihong Wan, Assistant Professor of Pharmacology and member of the UT Southwestern Harold C. Simmons Cancer Center.

Her team found that injecting nanoparticles containing an artificial version, or mimic, of miR-34a into a mouse with post-menopausal osteoporosis decreased  bone loss. "Interestingly, the mouse miR-34a is identical to that in humans, which means that our findings may apply to humans as well," said Dr. Wan, Virginia Murchison Linthicum Scholar in Medical Research at UT Southwestern.

The study is published online in the journal Nature.

High levels of bone destruction and reduced bone density caused by excessive osteoclasts are characteristic of osteoporosis, a common bone disease in which bones become fragile and susceptible to fracture. This condition disproportionately affects seniors and women, and leads to more than 1.5 million fractures annually.

miR-34a could have an additional therapeutic application, offering protection from bone metastases in a variety of cancers, Dr. Wan noted. Bone metastases happen when cancer cells travel from the primary tumor site to the bone, establishing a new cancer location. Researchers saw that injecting the miR-34a mimic in mice could prevent the metastasis of breast and skin cancer cells specifically to bone, mainly by disarming the metastatic niche in bone.

Co-author Dr. Joshua Mendell, Professor of Molecular Biology at UT Southwestern and member of the UT Southwestern Harold C. Simmons Cancer Center, noted that his laboratory previously showed that miR-34a can directly suppress the growth of cancer cells.

 "We were very excited to see, through this collaborative work with Dr. Wan's group, that miR-34a can also suppress bone metastasis.  Thus, miR-34a-based therapy could provide multiple benefits for cancer patients," said Dr. Mendell, CPRIT Scholar in Cancer Research. CPRIT is the Cancer Prevention and Research Institute of Texas, which provides voter-approved state funds for groundbreaking cancer research and prevention programs and services in Texas.

###

Other UT Southwestern researchers involved include Dr. Xian-Jin Xie, Associate Professor of Clinical Sciences and a member of the Harold C. Simmons Cancer Center; Dr. Tsung-Cheng Chang, Assistant Professor of Molecular Biology; and postdoctoral researchers Jing Y. Krzeszinski (lead author), Wei Wei, HoangDinh Huynh, Zixue Jin, and Xunde Wang. The work was carried out in collaboration with Lin He from the University of California at Berkeley, and Lingegowda Mangala, Gabriel Lopez-Berestein and Anil Sood from UT MD Anderson Cancer Center.

UT Southwestern's Harold C. Simmons Cancer Center is the only National Cancer Institute-designated cancer center in North Texas and one of just 66 NCI-designated cancer centers in the nation. It includes 13 major cancer care programs with a focus on treating the whole patient with innovative treatments, while fostering groundbreaking basic research that has the potential to improve patient care and prevention of cancer worldwide. In addition, the Center's education and training programs support and develop the next generation of cancer researchers and clinicians.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution's faculty includes many distinguished members, including six who have been awarded Nobel Prizes since 1985. Numbering more than 2,700, the faculty is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in 40 specialties to nearly 91,000 hospitalized patients and oversee more than 2 million outpatient visits a year.

Russell Rian | Eurek Alert!

Further reports about: Biology Cancer MicroRNA fracture levels miR-34a osteoclasts osteoporosis therapeutic treatments

More articles from Health and Medicine:

nachricht Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place
23.07.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht FAU researchers identify Parkinson's disease as a possible autoimmune disease
23.07.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Detecting damage in non-magnetic steel with the help of magnetism

23.07.2018 | Materials Sciences

Researchers move closer to completely optical artificial neural network

23.07.2018 | Information Technology

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>