Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Microdevice Enables Culture of Rare Circulating Tumor Cells from Blood

25.04.2012
Ability to culture rare tumor cells isolated from blood could help improve patient response to therapy

A research collaboration between the Wyss Institute for Biologically Inspired Engineering at Harvard University and Children’s Hospital Boston has created a microfluidic device that can harvest rare circulating tumor cells (CTCs) from blood to enable their expansion in culture for analysis.

These cells, which have detached from a primary cancer site and often create a secondary -- or metastasized -- tumor, hold an extraordinary amount of information regarding patient-specific drug sensitivity, cancer progression, and patient response to therapy. Such information could help clinicians treat patients, but it has not been easily accessed due to the difficulty of isolating CTCs and expanding them in culture for subsequent analysis.

In alleviating this problem, the new technology has the potential to become a valuable tool for cancer diagnosis and personalized treatment. The research findings appear online in the journal Lab on a Chip.

Wyss Founding Director, Donald Ingber, M.D., Ph.D., and Wyss Postdoctoral Fellow Joo Kang, Ph.D., led the research team. Ingber is the Judah Folkman Professor of Vascular Biology at Harvard Medical School (HMS) and the Vascular Biology Program at Children's Hospital Boston, and Professor of Bioengineering at Harvard's School of Engineering and Applied Sciences. Kang is a Research Fellow at Children’s Hospital. Also on the team were Wyss Postdoctoral Fellow Mathumai Kanapathipillai; Children’s Hospital Research Fellow Silva Krause and Research Associate Heather Tobin; and Akiko Mammoto, an Instructor in Surgery at HMS and Children’s Hospital.

This novel approach for capturing and culturing CTCs combines micromagnetics and microfluidics within a cell-separation device, about the size of a credit card, in which microfluidic channels have been molded into a hard clear polymer. As blood flows through these channels, magnetic beads that have been coated to selectively stick to the CTCs are used to separate them from the other cells in the blood. The dimensions of the channels have been designed to protect CTCs from mechanical stresses that might alter their structure or biochemistry, as well as to maximize the number of CTCs that can be captured.

In the lab, the new approach demonstrated extremely high efficiency by capturing more than 90 percent of CTCs from the blood of mice with breast cancer. Of particular significance was the fact that the captured CTCs were able to be grown and expanded in culture. These intact living tumor cells could be used for additional testing and molecular analysis, for example, in screening drugs to meet the personal needs of individual patients in the future. Further testing found that the device is sensitive enough to detect the sudden increases in the number of CTCs that signal a cancer’s metastatic transition and could therefore alert clinicians to possible disease progression.

The Wyss Institute/Children’s Hospital team carried out their studies with one common type of breast cancer. But the same device could be used to address a wide range of tumor types as well as applications beyond cancer, such as collecting circulating stem cells or endothelial progenitor cells from the blood and growing them for use in organ repair, in the future.

For more information, contact Twig Mowatt
Twig.mowatt@wyss.harvard.edu


About the Wyss Institute for Biologically Inspired Engineering at Harvard University

The Wyss Institute for Biologically Inspired Engineering at Harvard University (http://wyss.harvard.edu) uses Nature’s design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Working as an alliance among Harvard’s Schools of Medicine, Engineering, and Arts & Sciences, and in partnership with Beth Israel Deaconess Medical Center, Brigham and Women’s Hospital, Children’s Hospital Boston, Dana Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, and Boston University, the Institute crosses disciplinary and institutional barriers to engage in high-risk research that leads to transformative technological breakthroughs. By emulating Nature’s principles for self-organizing and self-regulating, Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing. These technologies are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and new start-ups.

Twig Mowatt | EurekAlert!
Further information:
http://www.wyss.harvard.edu

More articles from Health and Medicine:

nachricht Structural framework for tumors also provides immune protection
26.02.2020 | Medical College of Georgia at Augusta University

nachricht Finding new clues to brain cancer treatment
21.02.2020 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Scientists 'film' a quantum measurement

26.02.2020 | Physics and Astronomy

Melting properties determine the biological functions of the cuticular hydrocarbon layer of ants

26.02.2020 | Interdisciplinary Research

Lights, camera, action... the super-fast world of droplet dynamics

26.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>