Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbubbles improve myocardial remodelling after infarction

21.02.2013
Researchers at Bonn University Hospital demonstrate that ultrasound can ameliorate the sequelae of a myocardial infarction

Scientists from the Bonn University Hospital successfully tested a method in mice allowing the morphological and functional sequelae of a myocardial infarction to be reduced. Tiny gas bubbles are made to oscillate within the heart via focused ultrasound - this improves microcirculation and decreases the size of the scar tissue. The results show that the mice, following myocardial infarction, have improved cardiac output as a result of this method, as compared to untreated animals. The study is now being presented in the professional journal PLOS ONE.

Every year in Germany, approximately 280,000 people suffer a myocardial infarction; more than 52,000 die as a result. Due to an occluded vessel, parts of the heart muscle no longer have sufficient circulation and the tissue dies off. These regions are not replaced by new heart muscle cells but instead by scar tissue – this generally causes the pump function of the heart to decrease following an infarction. Scientists from the Bonn University Hospital have now successfully tested a new method on mice with which scar tissue can be reduced and cardiac output increased.

Microbubbles are made to oscillate within the heart

"There are attempts to treat the scar tissue with gene therapy or stem cells - by contrast, we have chosen a physical approach to treatment," reports Adj. Professor Dr. med. Alexander Ghanem from the Department of Cardiology of the Bonn University Hospital. The researchers injected a total of 17 mice which had previously had a myocardial infarction with microscopically small, gas-filled bubbles in the bloodstream. Once the microbubbles reached the heart, they were made to vibrate there using focused ultrasound. "Through this mechanical stimulation, the circulation of the area of the infarction is improved - and the scar shrinks," says the cardiac specialist.

Treated animals demonstrate ameliorated post-infarction remodelling

The scientists compared the results of the mice treated with the microbubbles to those of a control group. Two weeks after the myocardial infarction, there was expected worsening of heart function in the control group due to the maturing of the scar tissue. In contrast, the mice treated with the microbubbles did not develop any cardiac insufficiency. Jonas Dörner, the first author of the study, summarizes the results: "The pumping function was significantly better in the treated animals as compared to the control group; there was also a significantly smaller amount of decayed heart muscle tissue." Along with the Department of Cardiology, the Departments of Cardiac Surgery and Anesthesiology and the Institute of Physiology took part in the investigations.

Ultrasound treatment stimulates growth hormones

The scientists sought the causes of the positive treatment success which is, however, unexplained to date. Following ultrasound treatment of the mice, it was demonstrated that the amount of the body's own growth hormones significantly increased in the heart. "This is evidently the reason why the scar formation decreased as a result of the oscillating microbubbles," says Dr. Ghanem. The scientists now hope that humans will also be able to eventually be treated with the microbubble-ultrasound method, however further investigations are still needed. "Potentially, all patients who have had an acute myocardial infarction are eligible for this follow-up treatment," explains the cardiologist of the Bonn University Hospital. Interestingly, microbubbles are already used as a diagnostic contrast agent.

Patent for novel ultrasound method filed

The study, conducted with support from the BONFOR funding program of the Medical Faculty of Bonn University and the German Heart Foundation [Deutsche Herzstiftung e.V.], gave rise to a patent application. "Together with the company Philips Medical, we developed a novel ultrasonic probe which enables a standardized impulse discharge in the heart," reports the cardiologist. The special feature is that two ultrasound sources linked together are contained in one hybrid ultrasonic probe: one with low frequency for the focused stimulation of the microbubbles in the target organ and one with higher frequency for imaging. In this way, it can be very precisely determined where the scar tissue and the microbubbles are located. "This study demonstrates again that university research inspires technological developments in medicine," says Dr. Ghanem.

Publication: Ultrasound-mediated stimulation of microbubbles after acute myocardial infarction and reperfusion ameliorates left-ventricular remodelling in mice via improvement of borderzone vascularisation, PLOS ONE, DOI: 10.1371/journal.pone.0056841, Internet: Internet: http://dx.plos.org/10.1371/journal.pone.0056841

Contact information:

Adj. Professor Dr. med. Alexander Ghanem
Department of Cardiology
Bonn University Hospital
Tel. +49 228 28715507
E-Mail: ghanem@uni-bonn.de

Alexander Ghanem | EurekAlert!
Further information:
http://www.uni-bonn.de

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>