Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mice provide insight into genetics of autism spectrum disorders

28.06.2017

While the definitive causes remain unclear, several genetic and environmental factors increase the likelihood of autism spectrum disorder, or ASD, a group of conditions covering a "spectrum" of symptoms, skills and levels of disability.

Taking advantage of advances in genetic technologies, researchers led by Alex Nord, assistant professor of neurobiology, physiology and behavior with the Center for Neuroscience at the University of California, Davis, are gaining a better understanding of the role played by a specific gene involved in autism. The collaborative work appears June 26 in the journal Nature Neuroscience.


In this mouse cortex, a mutation in the CHD8 gene caused increased brain size, or megalencephaly, a condition also present in people with autism spectrum disorder. The colored sections correspond to different layers of the developing cortex.

Credit: Alex Nord/UC Davis

"For years, the targets of drug discovery and treatment have been based on an unknown black box of what's happening in the brain," said Nord. "Now, using genetic approaches to study the impact of specific mutations found in cases, we're trying to build a cohesive model that links genetic control of brain development with behavior and brain function."

The Nord laboratory studies how the genome encodes brain development and function, with a particular interest in understanding the genetic basis of neurological disorders.

Mouse brain models

There is no known specific genetic cause for most cases of autism, but many different genes have been linked to the disorder. In rare, specific cases of people with ASD, one copy of a gene called CHD8 is mutated and loses function. The CHD8 gene encodes a protein responsible for packaging DNA in cells throughout the body. Packaging of DNA controls how genes are turned on and off in cells during development.

Because mice and humans share on average 85 percent of similarly coded genes, mice can be used as a model to study how genetic mutations impact brain development. Changes in mouse DNA mimic changes in human DNA and vice-versa. In addition, mice exhibit behaviors that can be used as models for exploring human behavior.

Nord's laboratory at UC Davis and his collaborators have been working to characterize changes in brain development and behavior of mice carrying a mutated copy of CHD8.

"Behavioral tests with mice give us information about sociability, anxiety and cognition. From there, we can examine changes at the anatomical and cellular level to find links across dimensions," said Nord. "This is critical to understanding the biology of disorders like autism."

By inducing mutation of the CHD8 gene in mice and studying their brain development, Nord and his team have established that the mice experience cognitive impairment and have increased brain volume. Both conditions are also present in individuals with a mutated CHD8 gene.

New implications for early and lifelong brain development

Analysis of data from mouse brains reveals that CHD8 gene expression peaks during the early stages of brain development. Mutations in CHD8 lead to excessive production of dividing cells in the brain, as well as megalencephaly, an enlarged brain condition common in individuals with ASD. These findings suggest the developmental causes of increased brain size.

More surprisingly, Nord also discovered that the pathological changes in gene expression in the brains of mice with a mutated CHD8 continued through the lifetime of the mice. Genes involved in critical biological processes like synapse function were impacted by the CHD8 mutation. This suggests that CHD8 plays a role in brain function throughout life and may affect more than early brain development in autistic individuals.

While Nord's research centers on severe ASD conditions, the lessons learned may eventually help explain many cases along the autism spectrum.

Collaborating to improve understanding

Nord's work bridges disciplines and has incorporated diverse collaborators. The genetic mouse model was developed at Lawrence Berkeley National Laboratory using CRISPR editing technology, and co-authors Jacqueline Crawley and Jill Silverman of the UC Davis MIND Institute evaluated mouse behavior to characterize social interactions and cognitive impairments.

Nord also partnered with co-author Konstantinos Zarbalis of the Institute for Pediatric Regenerative Medicine at UC Davis to examine changes in cell proliferation in the brains of mice with the CHD8 mutation, and with Jason Lerch from the Mouse Imaging Centre at the Hospital for Sick Children in Toronto, Canada, to conduct magnetic resonance imaging on mouse brains.

"It's the act of collaboration that I find really satisfying," Nord said. "The science gets a lot more interesting and powerful when we combine different approaches. Together we were able to show that mutation to CHD8 causes changes to brain development, which in turn alters brain anatomy, function and behavior."

In the future, Nord hopes to identify how CHD8 packages DNA in neural cells and to determine the specific impacts to early brain development and synaptic function. Nord hopes that deep exploration of CHD8 mutations will ultimately yield greater knowledge of the general factors contributing to ASD and intellectual disability.

###

Nord holds joint appointments in the Department of Psychiatry and Behavioral Sciences, and Department of Neurobiology, Physiology and Behavior, and is affiliated with the UC Davis Genome Center and MIND Institute. Additional co-authors on the paper are: Andrea Gompers, Linda Su-Feher, Nycole Copping, Tyler Stradleigh, Michael Pride, Melanie Schaffler, Ayanna Wade, Rinaldo Catta-Preta, Iva Zdilar and Shreya Louis, all at UC Davis; Jacob Ellegood, Toronto Hospital for Sick Children; M. Asrafuzzaman Riyadh and Gaurav Kaushik, Shriners Hospitals for Children, Sacramento; Brandon Mannion, Ingrid Plajzer-Frick, Veena Afzal, Len Pennacchio and Diane Dickel, Lawrence Berkeley National Laboratory; and Axel Visel, UC Merced and LBNL.

The research was funded by the UC Davis MIND Institute Intellectual and Developmental Disabilities Research Center, the National Institute of General Medical Sciences (NIH) and UC Davis.

ahfell@ucdavis.edu | EurekAlert!

Further reports about: ASD DNA Mice Neuroscience autism spectrum autism spectrum disorders brain function genes mutations

More articles from Health and Medicine:

nachricht Mutations in donors' stem cells may cause problems for cancer patients
17.01.2020 | Washington University School of Medicine

nachricht Overactive brain waves trigger essential tremor
17.01.2020 | Columbia University Irving Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

Im Focus: SuperTIGER on its second prowl -- 130,000 feet above Antarctica

A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.

SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

A new 'cool' blue

17.01.2020 | Life Sciences

EU-project SONAR: Better batteries for electricity from renewable energy sources

17.01.2020 | Power and Electrical Engineering

Neuromuscular organoid: It’s contracting!

17.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>