Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New medications show promise in treating drug-resistant prostate cancer

09.04.2009
A new therapy for metastatic prostate cancer has shown considerable promise in early clinical trials involving patients whose disease has become resistant to current drugs.

Of 30 men who received low doses of one the drugs in a multisite phase I/II trial designed to evaluate safety, 22 showed a sustained decline in the level of prostate specific antigen (PSA) in their blood. Phase III clinical trials are planned to evaluate the drug's effect on survival in a large group of patients with metastatic prostate cancer.

The drugs are second-generation antiandrogen therapies that prevent male hormones from stimulating growth of prostate cancer cells. The new compounds – manufactured by the pharmaceutical company Medivation and known as MDV3100 and RD162 – appear to work well even in prostate cells that have a heightened sensitivity to hormones. That heightened sensitivity makes prostate cancer cells resistant to existing antiandrogen therapies.

The drugs were discovered in the laboratory of Howard Hughes Medical Institute investigator Charles Sawyers at Memorial Sloan-Kettering Cancer Center in collaboration with chemist Michael Jung at UCLA. He and his colleagues described the development of the drugs and initial testing in an article posted online April 9, 2009, in Science Express, which provides electronic publication of selected Science articles in advance of print. Sawyers's team collaborated on the studies with researchers from the University of California Los Angeles, Oregon Health and Science University, University of Washington and Medivation.

About 186,000 new cases of prostate cancer are diagnosed each year in the United States. The male hormones testosterone and dihydrotestosterone -- also known as androgens -- spur the growth of prostate cells, and drugs that block the receptors for these hormones are the most common treatment for the disease in its advanced, metastatic stage. Antiandrogen drugs, such as bicalutamide, suppress the growth of cancer cells temporarily, but in most patients the cancer ultimately develops resistance to drugs. About 29,000 men in the United States die each year from the disease.

Prostate cancer becomes resistant to antiandrogen drugs when cancer cells begin to increase production of the androgen receptor, said Sawyers. When the level of androgen receptors on the cells' surface reaches a certain level, the drugs that originally suppressed the cancer actually begin to stimulate cancer growth.

Because of this backlash effect, many scientists have questioned whether blocking the androgen receptor is a wise course of action. But Sawyers and his colleagues believe that blocking the receptor is critical to successful treatment. So they set out to design a new generation of drugs that can block the androgen receptor without unwanted side effects, even when levels of the receptor are high.

Researchers in Sawyers' lab based their designs on a drug that tightly attaches to the site on the androgen receptor that binds testosterone. If that site is blocked, the hormone cannot bind to prostate cells and tell the receptor to stimulate growth. Using this molecule as a chemical scaffold, the researchers synthesized nearly 200 slightly different versions of the drug. They tested each one in the lab on prostate cancer cells that had been engineered to produce high levels of androgen receptor.

This screening yielded two molecules, RD162 and MDV3100, which tightly bind to the androgen receptor and did not show the cancer-stimulating effect of bicalutamide and other current antiandrogen drugs. The molecules were good candidates for drugs, because they are readily absorbed into the blood when taken orally and they persist in the bloodstream.

The researchers tested the new drugs' effectiveness in mice with tumors derived from drug-resistant prostate cancer cells. "To our delight, we found that these compounds caused very dramatic shrinkage of tumors in the mice," said Sawyers. "While treating these animals with bicalutamide produced a modest effect on their tumors, the new drugs caused the tumors to shrink dramatically, and in some animals almost completely," he said.

Sawyers said the new drugs bind tightly enough to the natural hormone-binding site on androgen receptors to prevent most of them from functioning – even in cells with a lot of androgen receptors. Bicalutamide interferes with the receptor through a different mechanism, which backfires, when too much androgen receptor is present, Sawyers explained.

The promising laboratory studies led Medivation to license the drugs for commercial development, said Sawyers, who serves as a consultant to the company and would receive royalties on the drug should it prove to be successful.

The company chose to use MDV3100 for clinical studies, which began in 2007. In those initial studies, 30 men with antiandrogen-resistant prostate cancer received low doses of MDV3100. Twenty-two of those men showed a sustained decline in their blood levels of prostate specific antigen (PSA), an indication that their cancer was responding favorably to the drug. This trial is still under way, and results from a total of 140 patients receiving higher doses of the drug will be reported within the next year, said Sawyers.

Medivation has received permission from the Food and Drug Administration for a large clinical trial of MDV3100 on about 1,200 patients with antiandrogen-resistant disease. This study will assess MDV3100's effect on cancer survival and will take several years.

While these preliminary results are promising, Sawyers said his laboratory will continue to seek further improvements in drug therapy for prostate cancer. "There were some men in the initial trial in which the drug didn't work at all, and we want to find out why," he said. "It may be because the drug is not potent enough to overcome resistance due to androgen receptor overexpression. Or, it may be that the cancers in these men are not driven by the androgen receptor anymore. Also, there were men who initially received benefit from the drug, but then relapsed, and their PSA levels came back up. We want to understand the mechanism of that relapse and to try to develop drugs that prevent that renewed resistance," he said.

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Health and Medicine:

nachricht Potential seen for tailoring treatment for acute myeloid leukemia
10.12.2018 | University of Washington Health Sciences/UW Medicine

nachricht UC San Diego researchers develop sensors to detect and measure cancer's ability to spread
06.12.2018 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>