Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medication Slows Progression of Myopia in Children

26.08.2008
Daily treatment with a medication called pirenzepine can slow the rate of progressive myopia, or nearsightedness, in children, reports a study in the August issue of the Journal of AAPOS (American Association for Pediatric Ophthalmology and Strabismus).

Led by Dr. R. Michael Stiatkowski of Dean McGee Eye Institute/University of Oklahoma Department of Ophthalmology, the researchers evaluated the effects of pirenzepine in children with myopia. Myopia—sometimes called nearsightedness—is a condition in which focus on near objects is good, but distant objects appear blurry. Caused by a problem with the length of the eyeball or the curvature of the cornea, myopia gets worse over time in many children.

In the study, children with myopia were randomly assigned to treatment with pirenzepine gel or an inactive placebo gel. After a year of treatment, the average increase in myopia was significantly less for children using pirenzepine. The new study presents the final results in 84 patients who continued treatment for a total of two years: 53 with pirenzepine and 31 with placebo.

Although myopia worsened in both groups of children, the rate of progression was slower with pirenzepine. At the end of two years, myopia increased by an average of 0.58 diopters in children using pirenzepine versus 0.99 diopters with placebo. (All children initially had "moderate" myopia, with an average refractive error of about -2.00 diopters.)

New glasses are generally prescribed when myopia worsens by at least 0.75 diopters. During the study, 37 percent of children using pirenzepine met this cut-off point compared with 68 percent of the placebo group. With glasses, all children had about 20/20 vision at both the beginning and end of the study.

Pirenzepine treatment was generally safe, although eleven percent of children stopped using it because of side effects such as eye irritation. The drug also caused mild dilation of the pupils. The amount of change in the length of the eyeball was not significantly different between groups, although more research is needed to determine whether pirenzepine affects the growth of the eyes.

Myopia is the leading cause of loss of vision worldwide, affecting at least 25 percent of U.S. adults. Effective treatments to prevent or delay progressive myopia may reduce the risk of serious complications such as detached retina and glaucoma—even for children with moderate myopia, the risk of retinal detachment is increased by up to four times.

Treatments to slow worsening myopia could also have important quality-of-life benefits. For example, while children with -1.00 diopter of myopia may need glasses only part-time, those with -2.00 diopters will probably need glasses for all activities, including school and sports.

Previous studies have suggested that a drug called atropine can delay progression of myopia. The new results show that pirenzepine—a related drug with fewer side effects—is also safe and effective for this purpose.

More research will be needed before pirenzepine can be widely recommended for children with myopia. Key questions include the long-term effects and optimal length of pirenzepine treatment. In addition, more convenient and practical methods of drug administration may help to overcome some of the disadvantages of pirenzepine gel.

Jayne Dawkins | alfa
Further information:
http://www.elsevier.com

Further reports about: Myopia Strabismus eyeball nearsightedness pirenzepine progressive myopia

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>