Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medication Slows Progression of Myopia in Children

26.08.2008
Daily treatment with a medication called pirenzepine can slow the rate of progressive myopia, or nearsightedness, in children, reports a study in the August issue of the Journal of AAPOS (American Association for Pediatric Ophthalmology and Strabismus).

Led by Dr. R. Michael Stiatkowski of Dean McGee Eye Institute/University of Oklahoma Department of Ophthalmology, the researchers evaluated the effects of pirenzepine in children with myopia. Myopia—sometimes called nearsightedness—is a condition in which focus on near objects is good, but distant objects appear blurry. Caused by a problem with the length of the eyeball or the curvature of the cornea, myopia gets worse over time in many children.

In the study, children with myopia were randomly assigned to treatment with pirenzepine gel or an inactive placebo gel. After a year of treatment, the average increase in myopia was significantly less for children using pirenzepine. The new study presents the final results in 84 patients who continued treatment for a total of two years: 53 with pirenzepine and 31 with placebo.

Although myopia worsened in both groups of children, the rate of progression was slower with pirenzepine. At the end of two years, myopia increased by an average of 0.58 diopters in children using pirenzepine versus 0.99 diopters with placebo. (All children initially had "moderate" myopia, with an average refractive error of about -2.00 diopters.)

New glasses are generally prescribed when myopia worsens by at least 0.75 diopters. During the study, 37 percent of children using pirenzepine met this cut-off point compared with 68 percent of the placebo group. With glasses, all children had about 20/20 vision at both the beginning and end of the study.

Pirenzepine treatment was generally safe, although eleven percent of children stopped using it because of side effects such as eye irritation. The drug also caused mild dilation of the pupils. The amount of change in the length of the eyeball was not significantly different between groups, although more research is needed to determine whether pirenzepine affects the growth of the eyes.

Myopia is the leading cause of loss of vision worldwide, affecting at least 25 percent of U.S. adults. Effective treatments to prevent or delay progressive myopia may reduce the risk of serious complications such as detached retina and glaucoma—even for children with moderate myopia, the risk of retinal detachment is increased by up to four times.

Treatments to slow worsening myopia could also have important quality-of-life benefits. For example, while children with -1.00 diopter of myopia may need glasses only part-time, those with -2.00 diopters will probably need glasses for all activities, including school and sports.

Previous studies have suggested that a drug called atropine can delay progression of myopia. The new results show that pirenzepine—a related drug with fewer side effects—is also safe and effective for this purpose.

More research will be needed before pirenzepine can be widely recommended for children with myopia. Key questions include the long-term effects and optimal length of pirenzepine treatment. In addition, more convenient and practical methods of drug administration may help to overcome some of the disadvantages of pirenzepine gel.

Jayne Dawkins | alfa
Further information:
http://www.elsevier.com

Further reports about: Myopia Strabismus eyeball nearsightedness pirenzepine progressive myopia

More articles from Health and Medicine:

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

nachricht Black nanoparticles slow the growth of tumors
04.04.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>