Mechanisms Regulating Inflammation Associated with Type 2 Diabetes, Cancer Identified

Utilizing molecular analyses of gene expression in macrophages, which are cells largely responsible for inflammation, researchers have shown that inhibiting a defined group of proteins could help decrease the inflammatory response associated with diseases such as obesity, type 2 diabetes, cancer and sepsis.

The study, which is published online in the Journal of Immunology, was led by first author Anna C. Belkina, MD, PhD, a researcher in the department of microbiology at BUSM, and senior author Gerald V. Denis, PhD, associate professor of pharmacology and medicine at BUSM.

Epigenetics is an emerging field of study exploring how genetically identical cells express their genes differently, resulting in different phenotypes, due to mechanisms other than DNA sequence changes.

Previous studies have shown that a gene, called Brd2, is associated with high insulin production and excessive adipose (fat) tissue expansion that drives obesity when Brd2 levels are low and cancer when Brd2 levels are high. The Brd2 gene is a member of the Bromodomain Extra Terminal (BET) family of proteins and is closely related to Brd4, which is important in highly lethal carcinomas in young people, as well as in the replication of Human Immunodeficiency Virus (HIV).

The BET family proteins control gene expression epigenetically by acting on chromatin, the packaging material for genes, rather than on DNA directly. This mechanism of action is being explored because the interactions are not reflected in genome sequencing information or captured through DNA-based genetic analysis. In addition, this layer of gene regulation has recently been shown to be a potential target in the development of novel epigenetic drugs that could target several diseases at once.

The study results show that proteins in the BET family have a strong influence on the production of pro-inflammatory cytokines in macrophages. This indicates that the defined family of proteins govern many aspects of acute inflammatory diseases, such as type 2 diabetes, sepsis and cardiovascular disease, among others, and that they should be explored as a potential target to treat a wide variety of diseases.

“Our study suggests that it is not a coincidence that patients with diabetes experience higher risk of death from cancer, or that patients with chronic inflammatory diseases, such as atherosclerosis and insulin resistance, also are more likely to be obese or suffer from inflammatory complications,” said Belkina. “This requires us to think of diverse diseases of different organs as much more closely related than our current division of medical specialties allows.”

Future research should explore how to successfully and safely target and inhibit these proteins in order to stop the inflammatory response associated with a variety of diseases.

Research included in this press release was supported in part by the National Institutes of Health’s National Institute of Diabetes, Digestive and Kidney Diseases under grant award R56 DK090455 (Principal Investigator: Denis).

Media Contact

Jenny Eriksen Leary EurekAlert!

More Information:

http://www.bmc.org

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors