Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism of lung cancer-associated mutations suggests new therapeutic approaches

31.07.2012
Vanderbilt-Ingram Cancer Center researchers have identified how one of the genes most commonly mutated in lung cancer may promote such tumors.

The investigators found that the protein encoded by this gene, called EPHA3, normally inhibits tumor formation, and that loss or mutation of the gene – as often happens in lung cancer – diminishes this tumor-suppressive effect, potentially sparking the formation of lung cancer.

The findings, published July 24 in the Journal of the National Cancer Institute, could offer direction for personalizing cancer treatments and development of new therapies.

The ephrin family of receptors (EPH receptors) comprises a large group of cell surface proteins that regulate cell-to-cell communication in normal development and disease. EPH receptor mutations have been linked to several different cancer types.

Jin Chen, M.D., Ph.D., professor of Medicine, Cancer Biology and Cell & Developmental Biology, studies the cancer-associated roles of these receptors. While her lab has focused primarily on EPHA2 (and its role in promoting breast cancer and tumor blood vessel formation), she decided to look at a different ephrin receptor based on the findings of large genomic screens of lung tumors.

"A 2008 genome-wide study published in Nature identified 26 genes as potential drivers of lung cancer," Chen said. "One of them was EPHA3."

That study and others suggested that mutations in EPHA3 were present in 5 percent to 10 percent of lung adenocarcinomas. However, the studies did not reveal how these mutations might promote tumor formation or progression.

Chen wanted to investigate further whether mutations in EPHA3 were actually "drivers" of lung cancer or just neutral "passenger" mutations and how the mutations might promote tumor growth.

The researchers generated and analyzed 15 different mutations in the receptor. They found that at least two functioned as "dominant negative" inhibitors of the EPHA3 protein – that is, having a mutation in just one allele (or "copy" – humans have two copies of each gene) was enough to inhibit the function of EPHA3.

Chen and colleagues determined that normal or "wild type" EPHA3 inhibits a downstream signaling pathway (the Akt pathway) that promotes cell survival – so, normally, activation of EPHA3 acts as a "brake" on cell growth and survival and induces programmed cell death (apoptosis). When one EPHA3 allele is lost (due to a mutation), the receptor cannot be activated and the Akt pathway remains active, which promotes cell growth and survival.

To determine the impact of EPHA3 mutations on human lung cancer cases, biostatisticians Yu Shyr, Ph.D., and Fei Ye, Ph.D., helped Chen's group identify a mutational signature from existing patient data that strongly correlated with poor patient survival. The team also found that both gene and protein levels of EPHA3 were decreased in patient lung tumors.

While previous studies had linked EPHA3 mutations to lung cancer, the current study is the first to "connect the dots."

"The EPH family is such a big family that nobody had really connected the data from bench top – from the cell and biochemical studies – to human data," Chen said.

Together, the findings suggest that mutations in EPHA3 may be important drivers of a significant fraction of lung cancers. And the research team's identification of the biochemical and cellular consequences of EPHA3 mutations suggests that therapies that target a downstream pathway (such as Akt) might be beneficial for tumors with mutant EPHA3.
Shyr is a professor of Biostatistics, Cancer Biology and Preventive Medicine and is Director of the Center for Quantitative sciences; Ye is an assistant professor of Biostatistics.

The research was supported by grants from the National Cancer Institute (CA095004, CA114301, CA117915, CA009592, CA090949) of the National Institutes of Health, the Department of Veterans Affairs and the Department of Defense.

Melissa Stamm | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Molecular motors run in unison in a metal-organic framework

20.03.2019 | Life Sciences

Active substance from plant slows down aggressive eye cancer

20.03.2019 | Life Sciences

Novel sensor system improves reliability of high-temperature humidity measurements

20.03.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>