Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanical tissue resuscitation technology shows promise

17.04.2012
Wake Forest Baptist Medical Center researchers seeking a successful treatment for traumatic brain injury have found that the size and extent of damaged tissue can be reduced by using a new device to prevent cell death.

The research, the focus of a three-year, $1.5 million study funded by the Department of Defense, was recently published in the journal Neurosurgery. The technology, tested in rats, is called mechanical tissue resuscitation (MTR) and uses negative pressure to create an environment that fosters cell survival.

Louis C. Argenta, M.D., and Michael Morykwas, Ph.D., professors in the Department of Plastic Surgery and Reconstructive Surgery, and a multidisciplinary team of colleagues at Wake Forest Baptist, have more than 15 years of experience working with negative pressure devices to successfully treat wounds and burns. In this study, the team used MTR to remove fluid and other toxins that cause cell death from an injury site deep in the brain.

When the brain is injured by blunt force, explosion or other trauma, the cells at the impact site are irreversibly damaged and die. In the area surrounding the wound, injured cells release toxic substances that cause the brain to swell and restrict blood flow and oxygen levels. This process results in more extensive cell death which affects brain function. Argenta and his team targeted these injured brain cells to determine if removing the fluid and toxic substances that lead to cell death could help improve survival of the damaged cells.

In the study, a bioengineered material matrix was placed directly on the injured area in the brain and attached to a flexible tube connected to a microcomputer vacuum pump. The pump delivered a carefully controlled vacuum to the injured brain for 72 hours drawing fluid from the injury site.

The brain injuries treated with the device showed a significant decrease in brain swelling and release of toxic substances when compared to untreated injuries. Brains treated with the device showed that over 50% more brain tissue could be preserved compared to nontreated animals. Behavioral function tests demonstrated that function was returned faster in the MTR treated group.

"We have been very gratified by the results thus far. This study demonstrates that by working together a multidisciplinary group of researchers can develop new technology that could be used one day at the hospital bedside," said Argenta.

The researchers are now studying the same technology in stroke and brain hemorrhage models.

"The Department of Defense has identified this as an area that is ripe for medical advancement," said study co-author Stephen B. Tatter, MD, Ph.D., professor of neurosurgery at Wake Forest Baptist Medical Center. "We believe it will soon be ready for a clinical trial."

Co-authors on this study are Zhenlin Zheng, Ph.D., and Allyson Bryant, M.D., Department of Plastic Surgery and Reconstructive Surgery.

Paula Faria | EurekAlert!
Further information:
http://www.wakehealth.edu

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>