Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic physicians estimate new, tiny, super-sensitive probe could cut colon polyp removal in half

09.10.2008
Based on results of a landmark study, researchers at Mayo Clinic's Florida campus see a future in which virtual biopsies will eliminate the need to remove colon polyps that are not cancerous or will not morph into the disease.

Currently one-third to one-half of the polyps removed during colonoscopies end up being harmless, but they need to be examined by pathologists, and this increases time, expense and the potential for complications to the beneficial screening.

At the annual meeting of the American College of Gastroenterology, Mayo Clinic gastroenterologists will present final details of a study testing a probe so sensitive that it can tell if a cell in the colon is becoming cancerous or not.

They specifically found that the system, known as probe-based confocal laser endomicroscopy (pCLE), was 90 percent accurate in identifying benign or harmless polyps in patients. With further tweaking, the researchers believe pCLE can reach about 100 percent accuracy.

"Our goal is to remove only cancerous or precancerous polyps from patients during a colonoscopy, and I think we are close to that," says the study's lead investigator, Michael Wallace, M.D., M.P.H., professor of medicine at Mayo Clinic.

Mayo Clinic has been the U.S. leader in testing pCLE, among other endoscopic imaging technologies, and is one of three international institutions to have tested it in colon polyps. The system has been used under a research protocol for several years at Mayo. Now, physicians are starting to use it more broadly, especially to re-examine the colon in patients who previously had large, precancerous polyps removed and in pre-cancerous conditions elsewhere in the GI tract, such as Barrett's esophagus, Dr. Wallace says.

In this study, the researchers tested two different new imaging systems against the gold standard, which is examination of a removed polyp by a pathologist. "Using the expertise of a pathologist has been a great way to determine if a polyp is dangerous, but because half of these growths are not dangerous, we are seeking an equally effective and more efficient way to determine who is at risk of colon cancer," says the study's lead research fellow, Anna M. Buchner, M.D., who will present the results.

The pCLE system is a fiber-optic probe 2 millimeters in diameter that can be passed through a normal endoscope and can see structures as small as 1 micron, such as single cells or the nucleus within a cell. "This is essentially a miniaturized microscope that can be placed inside the body, so the tissue doesn't need to be removed and placed under a traditional microscope," Dr. Wallace says.

The pCLE system, which was developed by Mauna Kea Technologies (Paris, France), was tested against the Fujinon color enhancement system (FICE), which uses optical filters to look at a larger area of tissue. "This is like looking at the forest using FICE or the trees with pLCE," Dr. Wallace says.

A total of 57 polyps from 38 patients were examined. The FICE technique correctly diagnosed 41 of 57 polyps as benign, whereas pLCE picked up 51 of the benign lesions.

The researchers believe that the best use of these advanced technologies is to use FICE to provide a first look at suspicious areas of a colon during a colonoscopy and then to use pCLE to zero in on polyps in question.

"These new probes will change how colonoscopies and other procedures using endoscopes will be done in the future," says Dr. Buchner. "We will be able to perform real-time virtual biopsies, which will be more efficient in every way." One major advantage is that the pCLE system allows doctors to make a specific diagnosis at the time of the procedure and thus go directly to treatment instead of waiting two to three days for biopsy results to return. This should allow patients to avoid repeat procedures, Dr. Wallace says.

The study was supported by the American College of Gastroenterology and by manufacturers of the two devices. The study investigators have no consulting relationships with, or material interest in, these companies.

Kevin Punsky | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>