Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maternal exposure to outdoor air pollution associated with low birth weights worldwide

06.02.2013
Largest study of its kind shows link between outdoor particulate pollution and impaired fetal growth

Mothers who are exposed to particulate air pollution of the type emitted by vehicles, urban heating and coal power plants are significantly more likely to bear children of low birth weight, according to an international study led by co-principal investigator Tracey J. Woodruff, PhD, MPH, professor of obstetrics and gynecology and reproductive sciences at UC San Francisco along with Jennifer Parker, PhD, of the National Center for Health Statistics, Centers for Disease Control and Prevention.

The study, the largest of its kind ever performed, analyzed data collected from more than three million births in nine nations at 14 sites in North America, South America, Europe, Asia and Australia.

The researchers found that at sites worldwide, the higher the pollution rate, the greater the rate of low birth weight.

Low birth weight (a weight below 2500 grams or 5.5 pounds) is associated with serious health consequences, including increased risk of postnatal morbidity and mortality and chronic health problems in later life, noted lead author Payam Dadvand, MD, PhD, of the Centre for Research in Environmental Epidemiology (CREAL) in Barcelona, Spain.

In the study, published on February 6th, 2013 in the journal Environmental Health Perspectives, the team assessed data collected from research centers in the International Collaboration on Air Pollution and Pregnancy Outcomes, an international research collaborative established in 2007 to study the effects of pollution on pregnancy outcomes. Most of the data assessed was collected during the mid-1990s to the late 2000s, and in some cases, earlier.

"What's significant is that these are air pollution levels to which practically everyone in the world is commonly exposed," said Woodruff. "These microscopic particles, which are smaller than the width of a human hair, are in the air that we all breathe."

Woodruff noted that nations with tighter regulations on particulate air pollution have lower levels of these air pollutants. "In the United States, we have shown over the last several decades that the benefits to health and wellbeing from reducing air pollution are far greater than the costs," said Woodruff. "This is a lesson that all nations can learn from."

Particulate air pollution is measured in size (microns) and weight (micrograms per cubic meter). In the United States, federal regulations require that the yearly average concentration in the air to be no more than 12 µg/m3 of particles measuring less than 2.5 microns. In the European Union, the limit is 25 µg/m3, and regulatory agencies there are currently debating whether to lower it.

"This study comes at the right time to bring the issue to the attention of policy makers," said study co-author Mark Nieuwenhuijsen, PhD, of CREAL.

Nieuwenhuijsen observed that particulate air pollution in Beijing, China has recently been measured higher than 700 µg/m3.

"From the perspective of world health, levels like this are obviously completely unsustainable," he said.

Whether these pregnancy exposures can have effects later in life, currently is under investigation through an epidemiological follow-up of some of the children included in these studies.

Co-authors of the paper are Michelle L. Bell of Yale University; Matteo Bonzini of the University of Insubria, Varese, Italy; Michael Brauer of the University of British Columbia; Lyndsey Darrow of Emory University, Atlanta, Georgia; Ulrike Gehring of Utrecht University, the Netherlands; Svetlana V. Glinianaia of Newcastle University, United Kingdom; Nelson Gouveia of the University of Sao Paulo, Brazil; Eunhee Ha of Ewha Womans University, Seoul, Republic of Korea; Jong Han Leem of Inha University, Inchon, Republic of Korea; Edith H. van den Hooven of Erasmus Medical Center, Rotterdam the Netherlands; Bin Jalaludin of the University of New South Wales, Australia; Bill M. Jesdale of UC Berkeley; Johanna Lepeule of Harvard University and INSERM, Grenoble, France; Rachel Morello-Frosch of UC Berkeley; Geoffrey G. Morgan of the University of Sydney, Australia; Angela Cecilia Pesatori of Università di Milano, Milan, Italy; Frank H. Pierik of Urban Environment and Safety, TNO, Utrecht, the Netherlands; Tanja Pless-Mulloli of Newcastle University; David Q. Rich of the University of Rochester, New York; Sheela Sathyanarayana of the University of Washington; Juhee Seo of Ewha Womans University; Rémy Slama of INSERM, Grenoble, France; Matthew Strickland of Emory University; Lillian Tamburic of the University of British Columbia;and Daniel Wartenberg of UMDNJ-Robert Wood Johnson Medical School.

The study was supported by funds from the Environmental Protection Agency and the National Institute for Environmental Sciences in the United States; the Wellcome Fund in the United Kingdom; and the Ministry of Science and Innovation in Spain. In Vancouver, British Columbia, the BC Ministry of Health, the BC Vital Statistics Agency and the BC Reproductive Care Program approved access to and use of data facilitated by Population Data BC.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Karin Rush-Monroe | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>