Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mass. General research could expand availability of hand, face transplants

09.01.2014
Immune tolerance to grafts of muscle, bone and skin could free recipients from lifelong immunosuppression

Massachusetts General Hospital (MGH) investigators have made an important step towards greater availability of hand transplants, face transplants and other transplants involving multiple types of tissue.

In their report in the American Journal of Transplantation, the team describes how a procedure developed at the MGH to induce immune tolerance to organ transplants also induces tolerance to a model limb transplant in miniature swine. Transplantation of donor bone marrow – either several months before or simultaneous with the transplant – allowed the animals to accept what are called vascularized composite allografts (VCAs) from immunologically mismatched donors.

"The need for lifelong immunosuppression to prevent graft rejection is the most important challenge in this type of procedure, since most potential VCA recipients are young and would face increased risks of infection, diabetes or kidney problems, and even some types of cancer over many years," says Curtis L. Cetrulo, Jr., MD, head of the Hand Transplantation Service in the MGH Division of Plastic and Reconstructive Surgery and senior author of the current report.

"Bringing immunologic tolerance to hand and face transplantation would result in a paradigm shift in the way we will be able to treat the horrific injuries our service members are sustaining in the current military conflicts in Iraq and Afghanistan, as well for the types of blast-injury extremity loss seen in the Boston Marathon bombing. Tolerance would give us a unique tool – a real game changer – with which to help these patients," he says.

Most frequently used to replace amputated hands and arms and to repair severe facial injuries, VCAs involve transplantation of muscle, bone, skin and nerves. While offering significant improvement in recipients' quality of life, the procedures are not required to preserve a patient's life, making the need for lifelong immunosuppression a disadvantage. The induction of immune tolerance – essentially tricking a recipient's immune system into accepting donor tissue – could be an ideal solution to that problem.

The MGH is a world leader in the development of tolerance-inducing protocols. Several decades of research led by David H. Sachs, MD, founder and scientific director of the MGH Transplantation Biology Research Center (TBRC), led to a protocol in which transplant recipients receive both the needed organ and bone marrow from a living donor, producing a state called mixed chimerism, in which the patient's immune system contains both donor and recipient elements. A number of patients have received kidney transplants using versions of this protocol – which is still considered experimental – and were subsequently able to discontinue immunosuppressive drugs. Most of these patients have been able to remain off immunosuppressive medications long term, some for more than a decade.

The current study was designed to test whether a similar protocol could induce tolerance to VCAs from immunologically mismatched donors in an animal model. An additional challenge is posed by the fact that skin, an essential part of a VCA, carries what could be considered its own immune system, making its acceptance by a recipient's immune system particularly problematic. In several previous attempts to induce VCA tolerance, bone and muscle tissue were accepted but the skin was rejected and eventually separated from the underlying tissue.

Building on previous TBRC animal studies, the researchers tested whether combining bone marrow transplantation with VCA could induce chimerism and tolerance. In the first phase of the study, four recipient animals received bone marrow transplants from immunologically mismatched donors in advance, allowing time to confirm that chimerism had been established before the VCA procedure – involving transplantation of components of a hind limb from the same donor – was carried out three to five months later. Even though the recipients received no immunosuppression after the transplant procedure, all animals accepted the transplant with no sign of rejection.

Since pretransplant induction of chimerism would not be practical for hand or face transplants from deceased donors, the researchers tested VCA surgery conducted simultaneously with the bone marrow transplantation to induce tolerance in two recipient animals. Chimerism was successfully induced in both recipients, and overall results were the same as in the other group – immune tolerance of all components of the VCA with no evidence of rejection throughout the follow-up period, which for one recipient was more than 480 days.

In both groups of animals, the immune systems were preconditioned to accept donor immune cells prior to bone marrow transplantation. Since the availability of donor tissues cannot be precisely predicted, Cetrulo explains, the MGH team is exploring two approaches to the issue of timing the procedures. In one, immune conditioning begins as soon as a donor is identified and the transplant confirmed and continues during and immediately after a simultaneous bone marrow transplant/VCA procedure. The second adapts a protocol developed for organ transplantation in which the recipient receives conventional immunosuppression after VCA surgery and then immune conditioning and transplantation of donor marrow collected at the time of VCA are performed several months later.

"Along with investigating the role of skin-specific immunobiology in VCA tolerance, with the aim of identifying mechanisms that might by harnessed by clinical protocols of the future, we'll be conducting preclinical evaluation of both of the tolerance preconditioning protocols, which if successful, could be ready for testing in a clinical trial within the next year," says Cetrulo.

Christene A. Huang, PhD, of the MGH TBRC is a co-corresponding author of the American Journal of Transplantation paper; and David Leonard, MB ChB, and Josef Kurtz, PhD, of the TBRC are co-lead authors. Additional co-authors are C. Mallard, A. Albritton, R. Duran-Struuck, R. Crepeau, A. Matar, B. Horner and David H. Sachs, MD, of the TBRC; Mark Randolph, MGH Plastic and Reconstructive Surgery; and Evan Farkash, MD, PhD, MGH Pathology. Funding for the study includes National Institutes of Health grants NCI P01CA111519 and NIAID RO1A1084657, along with support from the Musculoskeletal Transplant Foundation and the Melina Nakos Foundation.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $775 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Kristen Chadwick | EurekAlert!
Further information:
http://www.massgeneral.org/

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>