Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New markers for allergic disorders thanks to analysis of medical databases

11.01.2011
Researchers at the University of Gothenburg, Sweden, have developed new methods for analysing medical databases that can be used to identify diagnostic markers more quickly and to personalise medication for allergic disorders. They could also reduce the need for animal trials in clinical studies.

Published in the journal PLoS Computational Biology, the study builds on data analyses of freely available medical databases representing studies of countless numbers of patients in the PubMed database, and microarray data in another major database. The use of microarrays is a method that allows scientists to study all 20,000 human genes at the same time for various disorders.

Groups of researchers in Gothenburg, Oslo and Rome have developed computational methods to simulate how a change in the interaction between several different genes in the lymphocytes (a kind of white blood cell) controls the immune system. They identified the genes by reviewing abstracts of all 18 million articles included in PubMed, and then constructed a network model of how these genes interact.

“The model can be compared to a printed circuit card in the lymphocyte which the cell uses to make decisions about whether to activate or suppress the immune system,” says Mikael Benson, a researcher at the Sahlgrenska Academy’s Unit for Clinical Systems Biology and consultant at the Queen Silvia Children’s Hospital. “These decisions are made constantly as the lymphocytes are constantly exposed to different particles, just through breathing for example. Some of the particles could be dangerous and need to trigger a decision to mobilise the immune system. However, sometimes wrong decisions are made, which can lead to various disorders such as allergy or diabetes.”

The researchers then carried out data simulations of how the network model reacted to repeated exposure to particles, which resulted in four reaction patterns, one of which was to suppress the immune system, while the other three were to trigger it in various ways.

“We found that the genes in the model reacted in lymphocytes from patients with various immunological disorders. We’ll be using the model to identify diagnostic markers so that we can personalise medication that we’re testing in clinical studies of allergy patients.”

Benson believes that these methods will become increasingly important in the future, as the huge amount of information in medical databases is growing all the time. This information could serve as an important resource for researchers in their endeavours to investigate and verify medical hypotheses.

“These methods could reduce the need for animal trials and lead to major savings in both time and money,” says Benson. “They could also mean quicker and better-designed experiments and their results could generate new knowledge about diagnostic markers or new medicines.”

The study comes under two EU projects, ComplexDis and MultiMod, both of which are led from the Sahlgrenska Academy. http://www.multimod-project.eu/index.html

For more information, please contact:
Mikael Benson, researcher, Unit for Clinical Systems Biology, Sahlgrenska Academy,and consultant, Queen Silvia Children’s Hospital,
tel. +46 (0)31 3435 162,
e-mail:mikael.benson@vgregion.se
Journal: PLoS Computational Biology
Title of article: Combining network modeling and gene expression microarray analysis to explore the dynamics of Th1 and Th2 cell regulation

Authors: Marco Pedicini Fredrik Barrenäs, Trevor Clancy, Filippo Castiglione, Eivind Hovig, Kartiek Kanduri, Daniele Santoni, Mikael Benson

Helena Aaberg | idw
Further information:
http://www.multimod-project.eu/index.html
http://www.gu.se

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>