Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marijuana component could ease pain from chemotherapy drugs

07.10.2011
A chemical component of the marijuana plant could prevent the onset of pain associated with drugs used in chemo therapy, particularly in breast cancer patients, according to researchers at Temple University's School of Pharmacy.

The researchers published their findings, "Cannabidiol Prevents the Development of Cold and Mechanical Allodynia in Paclitaxel-Treated Female C57Bl6 Mice," in the journal Anesthesia and Analgesia.

The researchers developed animal models and tested the ability of the compound cannabidiol, which is the second most abundant chemical found in the marijuana plant, to relieve chemo-induced neuropathic pain, said Sara Jane Ward, research assistant professor of pharmaceutical sciences in Temple's School of Pharmacy and the study's lead author.

"We found that cannabidiol completely prevented the onset of the neuropathic, or nerve pain caused by the chemo drug Paclitaxel, which is used to treat breast cancer," said Ward, who is also a research associate professor in Temple's Center for Substance Abuse Research.

Ward said that one of cannabidiol's major benefits is that, unlike other chemicals found in marijuana such as THC, it does not produce psycho-active effects such as euphoria, increased appetite or cognitive deficits. "Cannabidiol has the therapeutic qualities of marijuana but not the side effects," she said.

Ward's research has long focused on systems in the brain that are impacted by marijuana and whether those systems could be targeted in the treatment of various disorders. "Marijuana binds to the cannabinoid receptors in the body and researchers have long been interested in whether there is therapeutic potential for targeting this receptor system," she said.

Ward became interested in this current study after attending a conference in which she learned about a pain state that is induced by chemo-therapeutic agents, especially those used to treat breast cancer, which can produce really debilitating neuropathic pain.

Cannabidiol has also demonstrated the ability to decrease tumor activity in animal models, said Ward, which could make it an effective therapeutic for breast cancer, especially if you "combined it with a chemo agent like Paclitaxel, which we already know works well."

According to Ward, there are currently about 10 clinical trials underway in the United States for cannabidiol on a range of different disorders, including cannabis dependence, eating disorders and schizophrenia. Because of this, she believes it will be easier to establish a clinical trial for cannabidiol as a

therapeutic against neuropathic pain associated with chemo drugs.

In addition to Ward, Temple researchers involved in the study included Michael David Ramirez, Harshini Neelakantan and Ellen Ann Walker. The study was supported by grants from the National Institutes of Health and the Peter F. McManus Charitable Trust.

Preston M. Moretz | EurekAlert!
Further information:
http://www.temple.edu

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>