Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mammalian heart regenerative capacity depends on severity of injury

23.01.2015

Full recovery and normal function restored in mouse models following mild injury

A new study by researchers at Children's Hospital Los Angeles has shown that neonatal mouse hearts have varying regenerative capacities depending upon the severity of injury. Using cryoinjury - damaging the heart through exposure to extreme cold in order to mimic cellular injury caused by myocardial infarction - investigators found that neonatal mouse hearts can fully recover normal function following a mild injury, though fail to regenerate after a severe injury.


This is a neonatal mouse heart showing basal level of proliferating cardiomyocytes. (Red- cardiomyocytes; Green- proliferating cardiomyocytes; RV-right ventricle; LV-left ventricle.)

Credit: The Saban Research Institute of Children's Hospital Los Angeles

Published online by the journal Developmental Biology, the study suggests that cardiac regeneration strategies should be based on the type and severity of heart injury.

"Using models such as zebrafish and neonatal mice that regenerate their hearts naturally, we can begin to identify important molecules that enhance heart repair," said Ellen Lien, PhD, of The Saban Research Institute of Children's Hospital Los Angeles. Lien, who was senior author on the paper, is also an assistant professor at the Keck School of Medicine of the University of Southern California.

Newborn mice have shown the capacity for heart regeneration, but it is rapidly lost by seven days after birth. Approaches to extend this regenerative capacity in a mammalian model, from the neonatal period to the juvenile or adult period, could help identify new treatment options for humans.

Acute myocardial infarction, commonly known as a heart attack, can be classified according to the extent of damage to the heart muscle. Severe, or transmural injury, is associated with a blood supply blockage to the full thickness of the heart. Non-transmural injury indicates a blockage that penetrates only partially through the heart muscle. The investigators were able to develop models for both types of injury.

In addition to differences in regenerative capacity, the investigators also found an indicator of tissue fibrosis or "scarring", profibrotic marker PAI-1, was markedly elevated only after transmural injury. In both models post-injury, the cells that form heart muscle, cardiomyocytes, did not increase significantly. However, responses to cardiac injury repair in the outer layer of the heart (epicardium) and blood vessels (revascularization) - were present.

"If we can figure out how to activate this youthful type of myocardial regeneration program in humans, it will be a major clinical breakthrough," said David Warburton, OBE, DSc, MD, director of Developmental Biology and Regenerative Medicine at The Saban Research Institute of CHLA. Warburton is also a professor at the Keck School of Medicine of USC and was co-author on the paper.

Additional contributors include Ali Darehzereshki, Nicole Rubin, Laurent Gamba, Jieun Kim, James Fraser, Ying Huang, Joshua Billings, John Wood, David Warburton, The Saban Research Institute of CHLA; Robabeh Mohammadzadeh, Broad Center of Stem Cell and Regenerative Medicine, USC; Vesa Kaartinen, University of Michigan. Funding was provided in part by the National Heart, Lung and Blood Institute R01HL096121, The Saban Research Institute Career Development Award, and the California Institute of Regenerative Medicine (CIRM) postdoctoral fellowship TG2-01168.

Link to study: http://www.sciencedirect.com/science/article/pii/S0012160614006484

About Children's Hospital Los Angeles

Children's Hospital Los Angeles has been named the best children's hospital on the West Coast and among the top five in the nation for clinical excellence with its selection to the prestigious U.S. News & World Report Honor Roll. Children's Hospital is home to The Saban Research Institute, one of the largest and most productive pediatric research facilities in the United States. Children's Hospital is also one of America's premier teaching hospitals through its affiliation since 1932 with the Keck School of Medicine of the University of Southern California.

For more information, visit CHLA.org. Follow us on our blog http://researchlablog.org/.

Jennifer Jing | EurekAlert!

Further reports about: Biology Medicine heart muscle myocardial infarction neonatal regenerative

More articles from Health and Medicine:

nachricht Collagen nanofibrils in mammalian tissues get stronger with exercise
14.12.2018 | University of Illinois College of Engineering

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>