Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major genetic discovery explains 10 percent of aortic valve disease

28.09.2012
Researchers at the Sainte-Justine University Hospital Center and University of Montreal have identified genetic origins in 10% of an important form of congenital heart diseases by studying the genetic variability within families.

"This is more than the sum of the genes found to date in all previous studies, which explained only 1% of the disease, says Dr. Marc-Phillip Hitz, lead author of the study published in PLOS Genetics, under the direction of Dr. Gregor Andelfinger, pediatric cardiologist and principal investigator leading an international research team, who calls this study "a very important step towards a molecular catalog, which ultimately may explain the evolution of disease in individual patients and allow to influence the progression of the disease."

Congenital heart malformations are at the forefront of all malformations in newborns, and one of the most important causes of infant mortality in Western countries. For their study, the researchers focused on malformations of the aortic valve, where familial clustering of cases often suggests a hereditary component. The researchers therefore decided to adopt a "family approach" and selected families with several members having a heart condition, in order to be able to establish a direct link with the disease.

Using very strict filtering criteria to identify possible causal copy number variants –a structural form of variation of the genetic makeup that leads to an increase or decrease in the copy number of small parts of DNA within the genome– the researchers retained only rare variants directly involved in the disease processes and causing severe adverse health effects. The variants had to be carried by the patients but not by healthy members of their family. Researchers then validated the identified genes by confirming that they were highly expressed in the developing mouse heart.

The study also noted that many affected patients carried more than one rare variant. This finding had already been made in the context of other congenital diseases. In addition, the study reveals that in the 59 families analyzed, no copy number variants recurred between two families. "Despite the homogeneity of the French-Canadian population as compared to other populations and similarities seen within families, we realize that copy number variants are very different between families with no genealogical connection. From a genetic point of view, the diseases we looked at are a "family affair."

Moreover, although the study focused on the aortic valve area, genes explaining associated conditions have been identified. "It is striking that the majority of the identified genes also play an important role in blood vessels, not just in the valves of the heart," says Dr. Andelfinger. Indeed, the images are of striking clarity: expression patterns of the genes identified selectively stain areas of the heart where lesions are observed. "Numerous patients continue to have problems after successful initial intervention on the aortic valve, such as aortic dilation. Our study sheds new light on the link between the two issues, something we always observed clinically but had a hard time to explain," he concludes.

William Raillant-Clark | EurekAlert!
Further information:
http://www.umontreal.ca

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>