Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mainz researchers develop new theoretical framework for future studies of resilience

27.01.2015

New approach focuses on the appraisal of stressful or threatening situations by the brain

Researchers at the Research Center Translational Neurosciences of Johannes Gutenberg University Mainz (JGU) in Germany have advanced a generalized concept as the basis for future studies of mental resilience.

Their new approach is based on a mechanistic theory which takes as its starting point the appraisals made by the brain in response to exposure to stressful or threatening situations. Previously social, psychological, and genetic factors were in the foreground of resilience research. The Mainz-based team has published its conclusions in the renowned journal Behavioral and Brain Sciences.

Stress, traumatic events, and difficult life situations play a significant role in the development of many mental illnesses, such as depression, anxiety, addiction. However, not everyone exposed to such circumstances develops a psychological disorder as a result. Every person has a greater or lesser mental stabilizing capacity and this inherent potential is called 'resilience' by psychologists.

Resilience helps to effectively master challenges, stress, and difficult situations, thus maintaining mental health. The fact that some individuals either develop only short -term problems or do not become ill at all on experiencing major psychological or physical pressures suggests that there are certain protective mechanisms – in other words, defensive, self-healing processes – which can prevent the development of stress-related illnesses.

The core concern of the Mainz team of researchers is to identify these mechanisms. By means of a thorough review and analysis of the results of previous studies of and investigations into the subject of resilience, they were able to identify a common principle that can be used as a general basis for future studies of resilience. In order to achieve this, the researchers combined various parameters and research concepts – from psychological and social approaches to the results of genetic and even neurobiological investigations.

"To date, research into resilience has tended to take into account a very extensive range of social, psychological, and even genetic factors that positively influence mental flexibility, such as social support, certain personality traits, and typical behavior patterns," explained Professor Raffael Kalisch, one of the authors of the current publication and the director of the Neuroimaging Center, a central research platform of the Mainz University Medical Center and the Research Center on Translational Neurosciences. "We wondered whether there might be a common denominator behind all of these individual approaches and so we systematically examined various examples.

As a result, in our new hypothesis we focus less on the already well-known social, psychological, or genetic factors and much more on cognitive processes happening in the brain. We thus consider that the appropriate way forward is to determine how the brain assesses each situation or stimulus. It is quite possibly the positive evaluation of potentially aversive stimuli that is the central mechanism which ultimately determines an individual's level of resilience. The many already identified factors only impact on resilience indirectly by influencing the way the brain assesses a certain situation."

Assuming this theory is correct and it is the mental processes of evaluation that are of central relevance, this would mean that it is not necessarily the threatening situations or stimuli that decide whether stress develops but rather the manner in which the individual appraises the situation. A person who tends to more positively evaluate such factors would be protected against stress-related illnesses over the long term because the frequency and degree of stress reactions in that person would be reduced. The Mainz-based researchers call their new mechanistic hypothesis 'Positive Appraisal Style Theory of Resilience' (PASTOR).

The aim of future research activities will thus be to investigate the neurobiological processes that occur in the brain and that lead it to see a specific situation or potential threat in a more positive light. "We want to understand which mental processes enable people to protect themselves against the harmful effects of stress and unpleasant events, and how these protective mechanisms can be specifically promoted and reinforced," added Kalisch.

One example of an actual research project inspired by the PASTOR theory is the recently initiated Mainz Resilience Project (MARP). Being recruited for the study are young, healthy participants who are in the specific and frequently difficult phase of life that involves the transition from adolescence and school and family life to adulthood and work life. The researchers will be monitoring the study subjects over a period of several years in order to document their mental health and the stress factors to which they are exposed over time.

The researchers hope that this will enable them to identify key protective mechanisms in the brain as well as the mental characteristics that contribute to psychological resilience. The long-term goal is the development of effective preventative measures that would not only alleviate the distress suffered by individuals but also reduce the related financial and social outlay.

Mainz represents an ideal environment for investigations in this field. The German Resilience Center Mainz (“Deutsches Resilienz-Zentrum Mainz” (DRZ)), in which neuroscientists, physicians, psychologists, and social scientists combine forces, has been recently established in order to specifically investigate the phenomenon of resilience. With its three core objectives "Understand, Prevent, Change," the DRZ will be taking an innovative approach to dealing with a subject that is of global relevance. It closes an important gap in the German research landscape and is the first center of its kind in Europe.

Weitere Informationen:

http://www.blogs.uni-mainz.de/fb04grc/ - German Resilience Center (DRZ) ;
http://www.ftn.cic.uni-mainz.de/gbs-gutenberg-brain-study-2/affiliated-projects-... - Mainz Resilience Project (MARP)

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Bioinspired nanoscale drug delivery method developed by WSU, PNNL researchers
10.01.2019 | Washington State University

nachricht How herpesviruses shape the immune system
09.01.2019 | German Center for Infection Research

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Artificially produced cells communicate with each other: Models of life

17.01.2019 | Life Sciences

Velcro for human cells

16.01.2019 | Life Sciences

Kiel physicists discover new effect in the interaction of plasmas with solids

16.01.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>