Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mainz researchers develop new theoretical framework for future studies of resilience

27.01.2015

New approach focuses on the appraisal of stressful or threatening situations by the brain

Researchers at the Research Center Translational Neurosciences of Johannes Gutenberg University Mainz (JGU) in Germany have advanced a generalized concept as the basis for future studies of mental resilience.

Their new approach is based on a mechanistic theory which takes as its starting point the appraisals made by the brain in response to exposure to stressful or threatening situations. Previously social, psychological, and genetic factors were in the foreground of resilience research. The Mainz-based team has published its conclusions in the renowned journal Behavioral and Brain Sciences.

Stress, traumatic events, and difficult life situations play a significant role in the development of many mental illnesses, such as depression, anxiety, addiction. However, not everyone exposed to such circumstances develops a psychological disorder as a result. Every person has a greater or lesser mental stabilizing capacity and this inherent potential is called 'resilience' by psychologists.

Resilience helps to effectively master challenges, stress, and difficult situations, thus maintaining mental health. The fact that some individuals either develop only short -term problems or do not become ill at all on experiencing major psychological or physical pressures suggests that there are certain protective mechanisms – in other words, defensive, self-healing processes – which can prevent the development of stress-related illnesses.

The core concern of the Mainz team of researchers is to identify these mechanisms. By means of a thorough review and analysis of the results of previous studies of and investigations into the subject of resilience, they were able to identify a common principle that can be used as a general basis for future studies of resilience. In order to achieve this, the researchers combined various parameters and research concepts – from psychological and social approaches to the results of genetic and even neurobiological investigations.

"To date, research into resilience has tended to take into account a very extensive range of social, psychological, and even genetic factors that positively influence mental flexibility, such as social support, certain personality traits, and typical behavior patterns," explained Professor Raffael Kalisch, one of the authors of the current publication and the director of the Neuroimaging Center, a central research platform of the Mainz University Medical Center and the Research Center on Translational Neurosciences. "We wondered whether there might be a common denominator behind all of these individual approaches and so we systematically examined various examples.

As a result, in our new hypothesis we focus less on the already well-known social, psychological, or genetic factors and much more on cognitive processes happening in the brain. We thus consider that the appropriate way forward is to determine how the brain assesses each situation or stimulus. It is quite possibly the positive evaluation of potentially aversive stimuli that is the central mechanism which ultimately determines an individual's level of resilience. The many already identified factors only impact on resilience indirectly by influencing the way the brain assesses a certain situation."

Assuming this theory is correct and it is the mental processes of evaluation that are of central relevance, this would mean that it is not necessarily the threatening situations or stimuli that decide whether stress develops but rather the manner in which the individual appraises the situation. A person who tends to more positively evaluate such factors would be protected against stress-related illnesses over the long term because the frequency and degree of stress reactions in that person would be reduced. The Mainz-based researchers call their new mechanistic hypothesis 'Positive Appraisal Style Theory of Resilience' (PASTOR).

The aim of future research activities will thus be to investigate the neurobiological processes that occur in the brain and that lead it to see a specific situation or potential threat in a more positive light. "We want to understand which mental processes enable people to protect themselves against the harmful effects of stress and unpleasant events, and how these protective mechanisms can be specifically promoted and reinforced," added Kalisch.

One example of an actual research project inspired by the PASTOR theory is the recently initiated Mainz Resilience Project (MARP). Being recruited for the study are young, healthy participants who are in the specific and frequently difficult phase of life that involves the transition from adolescence and school and family life to adulthood and work life. The researchers will be monitoring the study subjects over a period of several years in order to document their mental health and the stress factors to which they are exposed over time.

The researchers hope that this will enable them to identify key protective mechanisms in the brain as well as the mental characteristics that contribute to psychological resilience. The long-term goal is the development of effective preventative measures that would not only alleviate the distress suffered by individuals but also reduce the related financial and social outlay.

Mainz represents an ideal environment for investigations in this field. The German Resilience Center Mainz (“Deutsches Resilienz-Zentrum Mainz” (DRZ)), in which neuroscientists, physicians, psychologists, and social scientists combine forces, has been recently established in order to specifically investigate the phenomenon of resilience. With its three core objectives "Understand, Prevent, Change," the DRZ will be taking an innovative approach to dealing with a subject that is of global relevance. It closes an important gap in the German research landscape and is the first center of its kind in Europe.

Weitere Informationen:

http://www.blogs.uni-mainz.de/fb04grc/ - German Resilience Center (DRZ) ;
http://www.ftn.cic.uni-mainz.de/gbs-gutenberg-brain-study-2/affiliated-projects-... - Mainz Resilience Project (MARP)

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>