Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Not all lung cancer patients who could benefit from crizotinib are identified by FDA-approved test

29.08.2012
Break apart a couple worm-like chromosomes and they may reconnect with mismatched tips and tails – such is the case of the EML4-ALK fusion gene that creates 2-7 percent of lung cancers.
Almost exactly a year ago, the FDA approved the drug crizotinib to treat these ALK+ lung cancer patients, who were likely never smokers. Informed doctors use the test called a FISH assay to check for the EML4-ALK fusion gene, and then if the test is positive, ALK+ patients benefit greatly from crizotinib.

A recent University of Colorado Cancer Center case study published in the Journal of Thoracic Oncology describes the never-before-seen case of a patient who tested negative for EML4-ALK fusion based on the well-defined criteria for FISH assay as approved by FDA, but nevertheless experienced remission after treatment with crizotinib.

“The case implies that not all patients who might benefit from the drug are captured by the FDA-approved FISH assay. Perhaps despite the FDA pairing of crizotinib with FISH, other assays or other criteria for ALK/FISH positivity could be used,” says paper co-author, Fred R. Hirsch, MD, PhD, investigator at the CU Cancer Center and professor of medical oncology and pathology at the CU School of Medicine.

In fact, it was by chance that after the patient’s negative FISH, Hirsch and colleagues chose to look deeper. Besides using FISH to stain sections of chromosomes with the EML4-ALK fusion gene, the team used immunohistochemistry to look for the protein products of this fusion gene – not the faulty plans but the faulty results. Sure enough, in this case, the patient had the EML4-ALK fusion protein but apparently without the typical EML4-ALK fusion gene that should code for it.

The team looked deeper, using next-gen sequencing to discover what, exactly, was going on in the short arm of chromosome number 2, which harbors the EML4-ALK fusion gene. What they found looked less like a pair of clean breaks that reattached in the wrong places – say, like a snapped radius and ulna that found the wrong reattachments to make a rulna and an ulnius – but more like shattered fragments with genetic shards embedded in and around the primary sections.

“We think these genetic shards made the resulting gene look different enough from the typical EML4-ALK fusion gene to avoid detection by the FDA approved FISH assay,” Hirsch says.

Within two weeks of starting crizotinib, the patient reported improved pain symptoms and energy. Four months after starting the drug, a PET scan, which shows the sugar signatures of rapidly developing cancer cells, was negative. A chest CT scan showed the primary tumor had shrunk by 75 percent.

“Certainly FISH is a valuable assay to check for ALK-positive lung cancer,” Hirsch says. “But we hope this work demonstrates the need to further refine this test, to ensure that all the patients who could benefit from crizotinib in fact receive the drug.”

Together with CU Cancer Center colleagues including Drs. Doebele, Garcia, Aisner and Camidge, Hirsch is participating in a larger study comparing different assays for ALK testing to determine which assay or combination of assays identifies the most patients likely to benefit from crizotinib.

Garth Sundem | EurekAlert!
Further information:
http://www.ucdenver.edu

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>