Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loss of identity in immune cells explained

18.02.2019

Regulatory T cells (Tregs) make sure that immune responses are not too strong and that inflammation is inhibited. This makes them highly interesting for therapies against inflammatory autoimmune diseases such as multiple sclerosis. But they are hard to use with patients, because Tregs lose their abilities in particularly inflamed tissues. A team of Technical University of Munich (TUM) has now succeeded in explaining this process in detail.

In autoimmune diseases such as arthritis or multiple sclerosis (MS) the body attacks its own tissue, causing inflammation of the nervous system or the joints, for example. A special group of immune cells, called Tregs, can specifically control and inhibit strong immune responses.


First author of the study Dr. Garima Garg and Dr. Andreas Muschaweckh, two scientists of the Experimental Neurimmunology at TUM, are working with a flow cytometer (FACS, Fluorescence-Activated

Astrid Eckert / Technical University of Munich

This limits immune responses and does not increase inflammation. Tregs are thus considered a possible therapy against inflammatory diseases such as arthritis or MS.

"However, many previous studies have put the spotlight on one main problem: In highly inflamed tissues in particular, Tregs often lose their identity and stop functioning as a brake for the immune system. But this is exactly the kind of region they are to be used in as therapeutic agents in immunotherapies," explains Thomas Korn, Professor for Experimental Neuroimmunology at the university hospital TUM Klinikum rechts der Isar and head of the study.

Blimp1 prevents loss of identity

In order to solve this problem, Korn and his fellow scientists investigated the process in cell cultures and in a mouse model. They succeeded in identifying a chain of reactions which is responsible for the loss of identity. The key turns out to be the protein Blimp1:

When Blimp1 is present and active, at the end of the chain of reactions a certain region in the genome of the immune cell referred to as the Foxp3 locus remains chemically unchanged. Even in inflamed tissues the Tregs retain their characteristic abilities, decisive for use in therapy.

When the researchers removed Blimp1 from cells, the genome changed chemically and the cells lost their identity. "The results we observed were profound: The Tregs not only lost their inhibiting capabilities, they even developed properties that promoted the inflammation. This means they might help worsen the disease," says Garima Garg, lead author of the publication.

Applications for Graft-versus-host disease

According to the scientists, the long-term goal is to keep Blimp1 active in therapeutically applied Tregs either by means of genetics or medications in order to prevent this loss of identity. They see bone marrow transplants and the associated and unwanted tissue rejection reactions as one of the first possible application areas.

Here the donor's blood cells making their way into the body of the recipient trigger severe inflammation. Tregs administered therapeutically at the same time could suppress these reactions and diminish the severity of Graft-versus-host disease. The Graft-versus-Host reaction refers to an immunological reaction in which the T cells in the transplanted tissue from the donor attack the recipient organism.

More information:
Thomas Korn has been Heisenberg Professor for Experimental Neuroimmunology at the Neurology Clinic of the Technical University of Munich (TUM) since 2010. He is member of the Cluster of Excellence „SyNergy – Munich Cluster for Systems Neurology“, which receives funding in the forthcoming Excellence Initiative.

Wissenschaftliche Ansprechpartner:

Prof. Thomas Korn
Chair for Experimental Neuroimmunology
University hospital TUM Klinikum rechts der Isar
Tel.: +49-89-4140-5617
thomas.korn@tum.de

Originalpublikation:

Garima Garg, Andreas Muschaweckh, Helena Moreno, Ajithkumar Vasanthakumar, Stefan Floess, Gildas Lepennetier, Rupert Oellinger, Yifan Zhan, Tommy Regen, Michael Hiltensperger, Christian Peter, Lilian Aly, Benjamin Knier, Lakshmi Reddy Palam, Reuben Kapur, Mark H. Kaplan, Ari Waisman, Roland Rad, Gunnar Schotta, Jochen Huehn, Axel Kallies, Thomas Korn: Blimp1 prevents methylation of Foxp3 and loss of regulatory T cell identity at sites of inflammation, Cell Report, February 12, 2019, DOI: 10.1016/j.celrep.2019.01.070 (Open Access)
https://www.cell.com/cell-reports/fulltext/S2211-1247(19)30099-3

Weitere Informationen:

https://mediatum.ub.tum.de/1474019 - Download high-resolution image
http://www.professoren.tum.de/en/korn-thomas/ - Thomas Korn´s profile
https://kornlab.med.tum.de/ - Thomas Korn´s research group
https://www.synergy-munich.de/index.html - Website of the Cluster of Excellence „SyNergy“

Dr. Ulrich Marsch | Technische Universität München

More articles from Health and Medicine:

nachricht First impressions go a long way in the immune system
22.07.2019 | Weizmann Institute of Science

nachricht Genetic differences between strains of Epstein-Barr virus can alter its activity
18.07.2019 | University of Sussex

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses

Augsburg chemists and physicists report how they have succeeded in the extremely difficult separation of hydrogen and deuterium in a gas mixture.

Thanks to the Surface Acoustic Wave (SAW) technology developed here and already widely used, the University of Augsburg is internationally recognized as the...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Toward molecular computers: First measurement of single-molecule heat transfer

22.07.2019 | Information Technology

First impressions go a long way in the immune system

22.07.2019 | Health and Medicine

New Record: PLQE of 70.3% in lead-free halide double perovskites

22.07.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>