Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loss of appetite deciphered in brain cell circuit

15.03.2012
Therapeutic targets also discovered for potential treatments for eating disorders

The meal is pushed way, untouched. Loss of appetite can be a fleeting queasiness or continue to the point of emaciation. While it's felt in the gut, more is going on inside the head. New findings are emerging about brain and body messaging pathways that lead to loss of appetite, and the systems in place to avoid starvation.

Today, scientists report in Nature about a brain circuit that mediates the loss of appetite in mice. The researchers also discovered potential therapeutic targets within the pathway. Their experimental results may be valuable for developing new treatments for a variety of eating disorders. These include unrelenting nausea, food aversions, and anorexia nervosa, a condition in which a person no longer wants to eat enough to maintain a normal weight.

The senior author of the paper is Dr. Richard D. Palmiter, University of Washington professor of biochemistry and an investigator with the Howard Hughes Medical Institute. His co-authors are Dr. Qi Wu, formerly of the UW and now at the Eagles Diabetes Research Center and Department of Pharmacology at Carver College of Medicine, University of Iowa, and Dr. Michael S. Clark of the UW Department of Psychiatry and Behavioral Sciences. Palmiter is known for co-developing the first transgenic mice in the 1980s with Dr. Ralph Brinster at the University of Pennsylvania. His more recent studies are of chemicals that nerve cells use to communicate with each other, their roles in mouse brain development and function, and their relation to behavior.

Palmiter and his colleagues concentrated on a part of the brain, a relay center called the parabrachial nucleus, because it is an important hub for integrating signals from several brain regions to modulate food intake. Nausea, as well as taste aversion or preferences, may originate from signals processed in the parabrachial nucleus.

In this most recent study, the researchers discovered the type and location of brain cells that send signals that agitate the parabrachial nucleus and thereby squelch the ability to eat. They also demonstrate how these signals can be blocked to restore normal appetite and to ward off starvation.

Earlier studies by Palmiter's team and by Dr. Michael Schwartz' team at the UW Center for Excellence in Diabetes and Obesity Research showed that certain nerve cells in the brain's hypothalamus play a role in promoting feeding and weight gain. They do so by collating a variety of signals from the body. If these brain cells are destroyed, feeding stops. Meals will be refused and liquid food placed into the mouth will hardly be swallowed.

The researchers later learned that the ensuing starvation is due to the excessive activation of the brain's parabrachial nucleus. The researchers found that starvation could be prevented by improving receptor signaling for a substance called GABA and thereby calm the excited parabrachial nucleus. This intervention had to be done within a critical adaptation period to be successful. GABA is one of the most common neurotransmitters – chemicals that ferry messages to and from nerve cells in the brain.

At first, the scientists were puzzled about the source of the command that turns on the parabrachial nucleus and makes it turn feeding off. Their research fingered two suspects and their locations in the brain. Their studies pointed out nerve cells involved with another neurotransmitter, glutamate, in the part of the brain called the nucleus tractus solitarus. Also contributing to the abnormal activation were cells involved in serotonin signaling. Both drive the hyper-excitability of nerve cells in the parabrachial nucleus that inhibit feeding.

The researchers went on to discover several ways to reinstate normal appetite by interfering with input signaling from these two cell types. They also tested how to censor "don't eat" signals coming from cells in the parabrachial nucleus.

Their studies revealed six interventions that prevented starvation when the cells that modulate food intake in the hypothalamus no longer function. These interventions acted upon various aspects of signaling to and from the parabrachial nucleus, in most cases by disabling or reducing signals or their receptors.

The researchers were able to prevent severe loss of appetite in their mouse model by administering bretazenil, a drug that promotes GABA signaling, or by administering ondansetron, a drug used to prevent nausea and vomiting during cancer chemotherapy. The Palmiter team also used specially constructed viruses to selectively reduce signaling by glutamate – the major excitatory signal in the brain.

The researchers believe that additional progress in dissecting circuits that control feeding will be achieved by identifying genes that are active in specific populations of brain cells within the parabrachial nucleus. Finding such genes will allow investigators to selectively manipulate their activity in the mouse and thereby control feeding behaviors.

This study was supported in part by a grant from the National Institutes of Health's National Institute on Drug Abuse.

Leila Gray | EurekAlert!
Further information:
http://www.washington.edu

More articles from Health and Medicine:

nachricht Potential seen for tailoring treatment for acute myeloid leukemia
10.12.2018 | University of Washington Health Sciences/UW Medicine

nachricht UC San Diego researchers develop sensors to detect and measure cancer's ability to spread
06.12.2018 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>