Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Location of body fat can increase hypertension risk

02.09.2014

Abdominal fat more strongly associated with high blood pressure risk than overall obesity

People with fat around their abdominal area are at greater risk of developing hypertension when compared to those with similar body mass index but fat concentrations elsewhere on the body, according to a study published today in the Journal of the American College of Cardiology.

Obesity is a known risk factor for hypertension, or high blood pressure, and it is widely reported that the location of fat on a person's body can lead to increased risk of other health issues like heart disease and cancer. However, the relationship between hypertension and overall obesity versus site-specific fat accumulation is unclear.

For this study, 903 patients enrolled in the Dallas Heart Study were followed for an average of seven years to track development of hypertension. Hypertension was classified as a systolic blood pressure of greater or equal to 140, diastolic blood pressure of greater or equal to 90, or initiation of blood pressure medications. Patients also received imaging of visceral fat, or fat located deep in the abdominal cavity between the organs; subcutaneous fat, or visible fat located all over the body; and lower-body fat.

... more about:
»ACC »Medical »abdominal »blood »factor »hypertension »kidneys »pressure »risk

"Generally speaking, visceral fat stores correlate with the 'apple shape' as opposed to the 'pear shape,' so having centrally located fat when you look in the mirror tends to correlate with higher levels of fat inside the abdomen," said senior author Aslan T. Turer, M.D., M.H.S., a cardiologist at the University of Texas Southwestern Medical Center in Dallas.

At the end of the study period, 25 percent of patients developed hypertension. While higher BMI was associated with increased incidence of hypertension, when abdominal fat content, overall fat content and lower-body fat content were factored in, only abdominal fat remained independently associated with hypertension. The relationship between abdominal fat and hypertension did not change when factoring in gender, age or race.

The strongest correlation between abdominal fat and hypertension was observed with retroperitoneal fat, which is a type of visceral fat located behind the abdominal cavity and largely around the kidneys.

"The high incidence of hypertension and presence of retroperiotoneal fat could suggest that the effects from fat around the kidneys are influencing the development of hypertension," Turer said. "This link could open new avenues for the prevention and management of hypertension. The finding of the fat around the kidney is a novel one and we do not know specifically what the 'in the mirror' correlates are."

###

The American College of Cardiology is a 47,000-member medical society that is the professional home for the entire cardiovascular care team. The mission of the College is to transform cardiovascular care and to improve heart health. The ACC leads in the formation of health policy, standards and guidelines. The College operates national registries to measure and improve care, provides professional medical education, disseminates cardiovascular research and bestows credentials upon cardiovascular specialists who meet stringent qualifications. For more information, visit cardiosource.org/ACC.

The Journal of the American College of Cardiology, which publishes peer-reviewed research on all aspects of cardiovascular disease, is the most widely read cardiovascular journal worldwide. JACC is ranked No. 1 among cardiovascular journals worldwide for its scientific impact.

Rachel Cagan | Eurek Alert!

Further reports about: ACC Medical abdominal blood factor hypertension kidneys pressure risk

More articles from Health and Medicine:

nachricht Protein shapes matter in Alzheimer's research
20.05.2020 | Michigan Technological University

nachricht Genetic tradeoffs do not stop evolution of antibiotic resistance
19.05.2020 | Universität zu Köln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

Im Focus: When proteins work together, but travel alone

Proteins, the microscopic “workhorses” that perform all the functions essential to life, are team players: in order to do their job, they often need to assemble into precise structures called protein complexes. These complexes, however, can be dynamic and short-lived, with proteins coming together but disbanding soon after.

In a new paper published in PNAS, researchers from the Max Planck Institute for Dynamics and Self-Organization, the University of Oxford, and Sorbonne...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New gravitational-wave model can bring neutron stars into even sharper focus

22.05.2020 | Physics and Astronomy

A replaceable, more efficient filter for N95 masks

22.05.2020 | Materials Sciences

Capturing the coordinated dance between electrons and nuclei in a light-excited molecule

22.05.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>