Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Limiting carbs, not calories, reduces liver fat faster

19.04.2011
Curbing carbohydrates is more effective than cutting calories for individuals who want to quickly reduce the amount of fat in their liver, report UT Southwestern Medical Center researchers.

"What this study tells us is that if your doctor says that you need to reduce the amount of fat in your liver, you can do something within a month," said Dr. Jeffrey Browning, assistant professor of internal medicine at UT Southwestern and the study's lead author.

The results, available online and in an upcoming issue of the American Journal of Clinical Nutrition, could have implications for treating numerous diseases including diabetes, insulin resistance and nonalcoholic fatty liver disease, or NAFLD. The disease, characterized by high levels of triglycerides in the liver, affects as many as one-third of American adults. It can lead to liver inflammation, cirrhosis and liver cancer.

For the study, researchers assigned 18 participants with NAFLD to eat either a low-carbohydrate or a low-calorie diet for 14 days.

The participants assigned to the low-carb diet limited their carbohydrate intake to less than 20 grams a day – the equivalent of a small banana or a half-cup of egg noodles – for the first seven days. For the final seven days, they switched to frozen meals prepared by UT Southwestern's Clinical and Translational Research Center (CTRC) kitchen that matched their individual food preferences, carbohydrate intake and energy needs.

Those assigned to the low-calorie diet continued their regular diet and kept a food diary for the four days preceding the study. The CTRC kitchen then used these individual records to prepare all meals during the 14-day study. Researchers limited the total number of calories to roughly 1,200 a day for the female participants and 1,500 a day for the males.

After two weeks, researchers used advanced imaging techniques to analyze the amount of liver fat in each individual. They found that the study participants on the low-carb diet lost more liver fat.

Although the study was not designed to determine which diet was more effective for losing weight, both the low-calorie dieters and the low-carbohydrate dieters lost an average of 10 pounds.

Dr. Browning cautioned that the findings do not explain why participants on the low-carb diet saw a greater reduction in liver fat, and that they should not be extrapolated beyond the two-week period of study.

"This is not a long-term study, and I don't think that low-carb diets are fundamentally better than low-fat ones," he said. "Our approach is likely to be only of short-term benefit because at some point the benefits of weight loss alone trounce any benefits derived from manipulating dietary macronutrients such as calories and carbohydrates.

"Weight loss, regardless of the mechanism, is currently the most effective way to reduce liver fat."

Other UT Southwestern researchers involved in the study were Dr. Shawn Burgess, senior author and assistant professor of pharmacology in the Advanced Imaging Research Center (AIRC); Dr. Jonathan Baker, assistant professor of pathology; Dr. Thomas Rogers, former professor of pathology; Jeannie Davis, clinical research coordinator in the AIRC; and Dr. Santhosh Satapati, postdoctoral researcher in the AIRC.

The National Institutes of Health supported the study.

Visit http://www.utsouthwestern.org/digestive to learn more about UT Southwestern's clinical services in digestive disorders, including liver disease.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via email, subscribe at www.utsouthwestern.edu/receivenews

Kristen Holland Shear | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>